gtsam/gtsam/base/Vector.h

384 lines
10 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Vector.h
* @brief typedef and functions to augment Eigen's VectorXd
* @author Kai Ni
* @author Frank Dellaert
*/
// \callgraph
#pragma once
#include <list>
#include <vector>
#include <iostream>
#include <gtsam/global_includes.h>
#include <gtsam/3rdparty/gtsam_eigen_includes.h>
namespace gtsam {
// Vector is just a typedef of the Eigen dynamic vector type
// Typedef arbitary length vector
typedef Eigen::VectorXd Vector;
// Commonly used fixed size vectors
typedef Eigen::Vector2d Vector2;
typedef Eigen::Vector3d Vector3;
typedef Eigen::Matrix<double, 4, 1> Vector4;
typedef Eigen::Matrix<double, 5, 1> Vector5;
typedef Eigen::Matrix<double, 6, 1> Vector6;
typedef Eigen::Matrix<double, 7, 1> Vector7;
typedef Eigen::Matrix<double, 8, 1> Vector8;
typedef Eigen::Matrix<double, 9, 1> Vector9;
typedef Eigen::VectorBlock<Vector> SubVector;
typedef Eigen::VectorBlock<const Vector> ConstSubVector;
/**
* An auxiliary function to printf for Win32 compatibility, added by Kai
*/
GTSAM_EXPORT void odprintf(const char *format, ...);
/**
* Create vector initialized to a constant value
* @param n is the size of the vector
* @param value is a constant value to insert into the vector
*/
GTSAM_EXPORT Vector repeat(size_t n, double value);
/**
* Create basis vector of dimension n,
* with a constant in spot i
* @param n is the size of the vector
* @param i index of the one
* @param value is the value to insert into the vector
* @return delta vector
*/
GTSAM_EXPORT Vector delta(size_t n, size_t i, double value);
/**
* Create basis vector of dimension n,
* with one in spot i
* @param n is the size of the vector
* @param i index of the one
* @return basis vector
*/
inline Vector basis(size_t n, size_t i) { return delta(n, i, 1.0); }
/**
* Create zero vector
* @param n size
*/
inline Vector zero(size_t n) { return Vector::Zero(n);}
/**
* Create vector initialized to ones
* @param n size
*/
inline Vector ones(size_t n) { return Vector::Ones(n); }
/**
* check if all zero
*/
GTSAM_EXPORT bool zero(const Vector& v);
/**
* dimensionality == size
*/
inline size_t dim(const Vector& v) { return v.size(); }
/**
* print with optional string
*/
GTSAM_EXPORT void print(const Vector& v, const std::string& s = "", std::ostream& stream = std::cout);
/**
* save a vector to file, which can be loaded by matlab
*/
GTSAM_EXPORT void save(const Vector& A, const std::string &s, const std::string& filename);
/**
* operator==()
*/
GTSAM_EXPORT bool operator==(const Vector& vec1,const Vector& vec2);
/**
* Greater than or equal to operation
* returns true if all elements in v1
* are greater than corresponding elements in v2
*/
GTSAM_EXPORT bool greaterThanOrEqual(const Vector& v1, const Vector& v2);
/**
* VecA == VecB up to tolerance
*/
GTSAM_EXPORT bool equal_with_abs_tol(const Vector& vec1, const Vector& vec2, double tol=1e-9);
GTSAM_EXPORT bool equal_with_abs_tol(const SubVector& vec1, const SubVector& vec2, double tol=1e-9);
/**
* Override of equal in Lie.h
*/
inline bool equal(const Vector& vec1, const Vector& vec2, double tol) {
return equal_with_abs_tol(vec1, vec2, tol);
}
/**
* Override of equal in Lie.h
*/
inline bool equal(const Vector& vec1, const Vector& vec2) {
return equal_with_abs_tol(vec1, vec2);
}
/**
* Same, prints if error
* @param vec1 Vector
* @param vec2 Vector
* @param tol 1e-9
* @return bool
*/
GTSAM_EXPORT bool assert_equal(const Vector& vec1, const Vector& vec2, double tol=1e-9);
/**
* Not the same, prints if error
* @param vec1 Vector
* @param vec2 Vector
* @param tol 1e-9
* @return bool
*/
GTSAM_EXPORT bool assert_inequal(const Vector& vec1, const Vector& vec2, double tol=1e-9);
/**
* Same, prints if error
* @param vec1 Vector
* @param vec2 Vector
* @param tol 1e-9
* @return bool
*/
GTSAM_EXPORT bool assert_equal(const SubVector& vec1, const SubVector& vec2, double tol=1e-9);
GTSAM_EXPORT bool assert_equal(const ConstSubVector& vec1, const ConstSubVector& vec2, double tol=1e-9);
/**
* check whether two vectors are linearly dependent
* @param vec1 Vector
* @param vec2 Vector
* @param tol 1e-9
* @return bool
*/
GTSAM_EXPORT bool linear_dependent(const Vector& vec1, const Vector& vec2, double tol=1e-9);
/**
* extract subvector, slice semantics, i.e. range = [i1,i2[ excluding i2
* @param v Vector
* @param i1 first row index
* @param i2 last row index + 1
* @return subvector v(i1:i2)
*/
GTSAM_EXPORT ConstSubVector sub(const Vector &v, size_t i1, size_t i2);
/**
* Inserts a subvector into a vector IN PLACE
* @param fullVector is the vector to be changed
* @param subVector is the vector to insert
* @param i is the index where the subvector should be inserted
*/
GTSAM_EXPORT void subInsert(Vector& fullVector, const Vector& subVector, size_t i);
/**
* elementwise multiplication
* @param a first vector
* @param b second vector
* @return vector [a(i)*b(i)]
*/
GTSAM_EXPORT Vector emul(const Vector &a, const Vector &b);
/**
* elementwise division
* @param a first vector
* @param b second vector
* @return vector [a(i)/b(i)]
*/
GTSAM_EXPORT Vector ediv(const Vector &a, const Vector &b);
/**
* elementwise division, but 0/0 = 0, not inf
* @param a first vector
* @param b second vector
* @return vector [a(i)/b(i)]
*/
GTSAM_EXPORT Vector ediv_(const Vector &a, const Vector &b);
/**
* sum vector elements
* @param a vector
* @return sum_i a(i)
*/
GTSAM_EXPORT double sum(const Vector &a);
/**
* Calculates L2 norm for a vector
* modeled after boost.ublas for compatibility
* @param v vector
* @return the L2 norm
*/
GTSAM_EXPORT double norm_2(const Vector& v);
/**
* Elementwise reciprocal of vector elements
* @param a vector
* @return [1/a(i)]
*/
GTSAM_EXPORT Vector reciprocal(const Vector &a);
/**
* Elementwise sqrt of vector elements
* @param v is a vector
* @return [sqrt(a(i))]
*/
GTSAM_EXPORT Vector esqrt(const Vector& v);
/**
* Absolute values of vector elements
* @param v is a vector
* @return [abs(a(i))]
*/
GTSAM_EXPORT Vector abs(const Vector& v);
/**
* Return the max element of a vector
* @param a is a vector
* @return max(a)
*/
GTSAM_EXPORT double max(const Vector &a);
/**
* Dot product
*/
template<class V1, class V2>
inline double dot(const V1 &a, const V2& b) {
assert (b.size()==a.size());
return a.dot(b);
}
/** compatibility version for ublas' inner_prod() */
template<class V1, class V2>
inline double inner_prod(const V1 &a, const V2& b) {
assert (b.size()==a.size());
return a.dot(b);
}
/**
* BLAS Level 1 scal: x <- alpha*x
* \deprecated: use operators instead
*/
inline void scal(double alpha, Vector& x) { x *= alpha; }
/**
* BLAS Level 1 axpy: y <- alpha*x + y
* \deprecated: use operators instead
*/
template<class V1, class V2>
inline void axpy(double alpha, const V1& x, V2& y) {
assert (y.size()==x.size());
y += alpha * x;
}
inline void axpy(double alpha, const Vector& x, SubVector y) {
assert (y.size()==x.size());
y += alpha * x;
}
/**
* house(x,j) computes HouseHolder vector v and scaling factor beta
* from x, such that the corresponding Householder reflection zeroes out
* all but x.(j), j is base 0. Golub & Van Loan p 210.
*/
GTSAM_EXPORT std::pair<double,Vector> house(const Vector &x);
/** beta = house(x) computes the HouseHolder vector in place */
GTSAM_EXPORT double houseInPlace(Vector &x);
/**
* Weighted Householder solution vector,
* a.k.a., the pseudoinverse of the column
* NOTE: if any sigmas are zero (indicating a constraint)
* the pseudoinverse will be a selection vector, and the
* variance will be zero
* @param v is the first column of the matrix to solve
* @param weights is a vector of weights/precisions where w=1/(s*s)
* @return a pair of the pseudoinverse of v and the associated precision/weight
*/
GTSAM_EXPORT std::pair<Vector, double>
weightedPseudoinverse(const Vector& v, const Vector& weights);
/*
* Fast version *no error checking* !
* Pass in initialized vector pseudo of size(weights) or will crash !
* @return the precision, pseudoinverse in third argument
*/
GTSAM_EXPORT double weightedPseudoinverse(const Vector& a, const Vector& weights, Vector& pseudo);
/**
* concatenate Vectors
*/
GTSAM_EXPORT Vector concatVectors(const std::list<Vector>& vs);
/**
* concatenate Vectors
*/
GTSAM_EXPORT Vector concatVectors(size_t nrVectors, ...);
} // namespace gtsam
#include <boost/serialization/nvp.hpp>
#include <boost/serialization/array.hpp>
#include <boost/serialization/split_free.hpp>
namespace boost {
namespace serialization {
// split version - copies into an STL vector for serialization
template<class Archive>
void save(Archive & ar, const gtsam::Vector & v, unsigned int version) {
const size_t size = v.size();
ar << BOOST_SERIALIZATION_NVP(size);
ar << make_nvp("data", make_array(v.data(), v.size()));
}
template<class Archive>
void load(Archive & ar, gtsam::Vector & v, unsigned int version) {
size_t size;
ar >> BOOST_SERIALIZATION_NVP(size);
v.resize(size);
ar >> make_nvp("data", make_array(v.data(), v.size()));
}
// split version - copies into an STL vector for serialization
template<class Archive, int D>
void save(Archive & ar, const Eigen::Matrix<double,D,1> & v, unsigned int version) {
ar << make_nvp("data", make_array(v.data(), v.RowsAtCompileTime));
}
template<class Archive, int D>
void load(Archive & ar, Eigen::Matrix<double,D,1> & v, unsigned int version) {
ar >> make_nvp("data", make_array(v.data(), v.RowsAtCompileTime));
}
} // namespace serialization
} // namespace boost
BOOST_SERIALIZATION_SPLIT_FREE(gtsam::Vector)
BOOST_SERIALIZATION_SPLIT_FREE(gtsam::Vector2)
BOOST_SERIALIZATION_SPLIT_FREE(gtsam::Vector3)
BOOST_SERIALIZATION_SPLIT_FREE(gtsam::Vector6)