gtsam/gtsam/geometry/SOt.h

185 lines
5.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SO3.h
* @brief 3*3 matrix representation of SO(3)
* @author Frank Dellaert
* @author Luca Carlone
* @author Duy Nguyen Ta
* @date December 2014
*/
#pragma once
#include <gtsam/geometry/SOn.h>
#include <gtsam/base/Lie.h>
#include <gtsam/base/Matrix.h>
#include <cmath>
#include <iosfwd>
#include <vector>
namespace gtsam {
using SO3 = SO<3>;
// /// Static, named constructor that finds SO(3) matrix closest to M in
// Frobenius norm. static SO3 ClosestTo(const Matrix3& M);
// /// Static, named constructor that finds chordal mean = argmin_R \sum
// sqr(|R-R_i|_F). static SO3 ChordalMean(const std::vector<SO3>& rotations);
// static Matrix3 Hat(const Vector3 &xi); ///< make skew symmetric matrix
// static Vector3 Vee(const Matrix3 &X); ///< inverse of Hat
// Below are all declarations of SO<3> specializations.
// They are *defined* in SO3.cpp.
/// Adjoint map
template <>
Matrix3 SO3::AdjointMap() const {
return matrix_;
}
/**
* Exponential map at identity - create a rotation from canonical coordinates
* \f$ [R_x,R_y,R_z] \f$ using Rodrigues' formula
*/
template <>
SO3 SO3::Expmap(const Vector3& omega, ChartJacobian H);
/// Derivative of Expmap
template <>
Matrix3 SO3::ExpmapDerivative(const Vector3& omega);
/**
* Log map at identity - returns the canonical coordinates
* \f$ [R_x,R_y,R_z] \f$ of this rotation
*/
template <>
Vector3 SO3::Logmap(const SO3& R, ChartJacobian H);
/// Derivative of Logmap
template <>
Matrix3 SO3::LogmapDerivative(const Vector3& omega);
// Chart at origin for SO3 is *not* Cayley but actual Expmap/Logmap
template <>
SO3 SO3::ChartAtOrigin::Retract(const Vector3& omega, ChartJacobian H) {
return Expmap(omega, H);
}
template <>
Vector3 SO3::ChartAtOrigin::Local(const SO3& R, ChartJacobian H) {
return Logmap(R, H);
}
template <>
Vector9 SO3::vec(OptionalJacobian<9, 3> H) const;
// private:
// /** Serialization function */
// friend class boost::serialization::access;
// template<class ARCHIVE>
// void serialize(ARCHIVE & ar, const unsigned int /*version*/)
// {
// ar & boost::serialization::make_nvp("R11", (*this)(0,0));
// ar & boost::serialization::make_nvp("R12", (*this)(0,1));
// ar & boost::serialization::make_nvp("R13", (*this)(0,2));
// ar & boost::serialization::make_nvp("R21", (*this)(1,0));
// ar & boost::serialization::make_nvp("R22", (*this)(1,1));
// ar & boost::serialization::make_nvp("R23", (*this)(1,2));
// ar & boost::serialization::make_nvp("R31", (*this)(2,0));
// ar & boost::serialization::make_nvp("R32", (*this)(2,1));
// ar & boost::serialization::make_nvp("R33", (*this)(2,2));
// }
namespace sot {
/**
* Compose general matrix with an SO(3) element.
* We only provide the 9*9 derivative in the first argument M.
*/
Matrix3 compose(const Matrix3& M, const SO3& R,
OptionalJacobian<9, 9> H = boost::none);
/// (constant) Jacobian of compose wrpt M
Matrix99 Dcompose(const SO3& R);
// Below are two functors that allow for saving computation when exponential map
// and its derivatives are needed at the same location in so<3>. The second
// functor also implements dedicated methods to apply dexp and/or inv(dexp).
/// Functor implementing Exponential map
class GTSAM_EXPORT ExpmapFunctor {
protected:
const double theta2;
Matrix3 W, K, KK;
bool nearZero;
double theta, sin_theta, one_minus_cos; // only defined if !nearZero
void init(bool nearZeroApprox = false);
public:
/// Constructor with element of Lie algebra so(3)
explicit ExpmapFunctor(const Vector3& omega, bool nearZeroApprox = false);
/// Constructor with axis-angle
ExpmapFunctor(const Vector3& axis, double angle, bool nearZeroApprox = false);
/// Rodrigues formula
SO3 expmap() const;
};
/// Functor that implements Exponential map *and* its derivatives
class GTSAM_EXPORT DexpFunctor : public ExpmapFunctor {
const Vector3 omega;
double a, b;
Matrix3 dexp_;
public:
/// Constructor with element of Lie algebra so(3)
explicit DexpFunctor(const Vector3& omega, bool nearZeroApprox = false);
// NOTE(luca): Right Jacobian for Exponential map in SO(3) - equation
// (10.86) and following equations in G.S. Chirikjian, "Stochastic Models,
// Information Theory, and Lie Groups", Volume 2, 2008.
// expmap(omega + v) \approx expmap(omega) * expmap(dexp * v)
// This maps a perturbation v in the tangent space to
// a perturbation on the manifold Expmap(dexp * v) */
const Matrix3& dexp() const { return dexp_; }
/// Multiplies with dexp(), with optional derivatives
Vector3 applyDexp(const Vector3& v, OptionalJacobian<3, 3> H1 = boost::none,
OptionalJacobian<3, 3> H2 = boost::none) const;
/// Multiplies with dexp().inverse(), with optional derivatives
Vector3 applyInvDexp(const Vector3& v,
OptionalJacobian<3, 3> H1 = boost::none,
OptionalJacobian<3, 3> H2 = boost::none) const;
};
} // namespace sot
/*
* Define the traits. internal::LieGroup provides both Lie group and Testable
*/
template <>
struct traits<SO3> : public internal::LieGroup<SO3> {};
template <>
struct traits<const SO3> : public internal::LieGroup<SO3> {};
} // end namespace gtsam