gtsam/gtsam_unstable/linear/QPSolver.cpp

281 lines
10 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file: QPSolver.cpp
* @brief:
* @date: Apr 15, 2014
* @author: Duy-Nguyen Ta
*/
#include <gtsam/inference/Symbol.h>
#include <gtsam/inference/FactorGraph-inst.h>
#include <gtsam_unstable/linear/QPSolver.h>
#include <boost/range/adaptor/map.hpp>
using namespace std;
namespace gtsam {
//******************************************************************************
QPSolver::QPSolver(const QP& qp) : qp_(qp) {
baseGraph_ = qp_.cost;
baseGraph_.push_back(qp_.equalities.begin(), qp_.equalities.end());
costVariableIndex_ = VariableIndex(qp_.cost);
equalityVariableIndex_ = VariableIndex(qp_.equalities);
inequalityVariableIndex_ = VariableIndex(qp_.inequalities);
constrainedKeys_ = qp_.equalities.keys();
constrainedKeys_.merge(qp_.inequalities.keys());
}
//******************************************************************************
VectorValues QPSolver::solveWithCurrentWorkingSet(
const InequalityFactorGraph& workingSet) const {
GaussianFactorGraph workingGraph = baseGraph_;
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, workingSet) {
if (factor->active())
workingGraph.push_back(factor);
}
return workingGraph.optimize();
}
//******************************************************************************
JacobianFactor::shared_ptr QPSolver::createDualFactor(Key key,
const InequalityFactorGraph& workingSet, const VectorValues& delta) const {
// Transpose the A matrix of constrained factors to have the jacobian of the dual key
std::vector<std::pair<Key, Matrix> > Aterms = collectDualJacobians
< LinearEquality > (key, qp_.equalities, equalityVariableIndex_);
std::vector<std::pair<Key, Matrix> > AtermsInequalities = collectDualJacobians
< LinearInequality > (key, workingSet, inequalityVariableIndex_);
Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
AtermsInequalities.end());
// Collect the gradients of unconstrained cost factors to the b vector
if (Aterms.size() > 0) {
Vector b = zero(delta.at(key).size());
if (costVariableIndex_.find(key) != costVariableIndex_.end()) {
BOOST_FOREACH(size_t factorIx, costVariableIndex_[key]) {
GaussianFactor::shared_ptr factor = qp_.cost.at(factorIx);
b += factor->gradient(key, delta);
}
}
return boost::make_shared<JacobianFactor>(Aterms, b); // compute the least-square approximation of dual variables
}
else {
return boost::make_shared<JacobianFactor>();
}
}
//******************************************************************************
GaussianFactorGraph::shared_ptr QPSolver::buildDualGraph(
const InequalityFactorGraph& workingSet, const VectorValues& delta) const {
GaussianFactorGraph::shared_ptr dualGraph(new GaussianFactorGraph());
BOOST_FOREACH(Key key, constrainedKeys_) {
// Each constrained key becomes a factor in the dual graph
JacobianFactor::shared_ptr dualFactor = createDualFactor(key, workingSet, delta);
if (!dualFactor->empty())
dualGraph->push_back(dualFactor);
}
return dualGraph;
}
//******************************************************************************
int QPSolver::identifyLeavingConstraint(
const InequalityFactorGraph& workingSet,
const VectorValues& lambdas) const {
int worstFactorIx = -1;
// preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is either
// inactive or a good inequality constraint, so we don't care!
double maxLambda = 0.0;
for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
if (factor->active()) {
double lambda = lambdas.at(factor->dualKey())[0];
if (lambda > maxLambda) {
worstFactorIx = factorIx;
maxLambda = lambda;
}
}
}
return worstFactorIx;
}
//******************************************************************************
/* We have to make sure the new solution with alpha satisfies all INACTIVE inequality constraints
* If some inactive inequality constraints complain about the full step (alpha = 1),
* we have to adjust alpha to stay within the inequality constraints' feasible regions.
*
* For each inactive inequality j:
* - We already have: aj'*xk - bj <= 0, since xk satisfies all inequality constraints
* - We want: aj'*(xk + alpha*p) - bj <= 0
* - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0
* it's good!
* - We only care when aj'*p > 0. In this case, we need to choose alpha so that
* aj'*xk + alpha*aj'*p - bj <= 0 --> alpha <= (bj - aj'*xk) / (aj'*p)
* We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p)
*
* We want the minimum of all those alphas among all inactive inequality.
*/
boost::tuple<double, int> QPSolver::computeStepSize(
const InequalityFactorGraph& workingSet, const VectorValues& xk,
const VectorValues& p) const {
static bool debug = false;
double minAlpha = 1.0;
int closestFactorIx = -1;
for(size_t factorIx = 0; factorIx<workingSet.size(); ++factorIx) {
const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
double b = factor->getb()[0];
// only check inactive factors
if (!factor->active()) {
// Compute a'*p
double aTp = factor->dotProductRow(p);
// Check if a'*p >0. Don't care if it's not.
if (aTp <= 0)
continue;
// Compute a'*xk
double aTx = factor->dotProductRow(xk);
// alpha = (b - a'*xk) / (a'*p)
double alpha = (b - aTx) / aTp;
if (debug)
cout << "alpha: " << alpha << endl;
// We want the minimum of all those max alphas
if (alpha < minAlpha) {
closestFactorIx = factorIx;
minAlpha = alpha;
}
}
}
return boost::make_tuple(minAlpha, closestFactorIx);
}
//******************************************************************************
QPState QPSolver::iterate(const QPState& state) const {
static bool debug = false;
// Algorithm 16.3 from Nocedal06book.
// Solve with the current working set eqn 16.39, but instead of solving for p solve for x
VectorValues newValues = solveWithCurrentWorkingSet(state.workingSet);
if (debug)
newValues.print("New solution:");
// If we CAN'T move further
// if p_k = 0 is the original condition, modified by Duy to say that the state update is zero.
if (newValues.equals(state.values, 1e-7)) {
// Compute lambda from the dual graph
if (debug)
cout << "Building dual graph..." << endl;
GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet, newValues);
if (debug)
dualGraph->print("Dual graph: ");
VectorValues duals = dualGraph->optimize();
if (debug)
duals.print("Duals :");
int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
if (debug)
cout << "leavingFactor: " << leavingFactor << endl;
// If all inequality constraints are satisfied: We have the solution!!
if (leavingFactor < 0) {
return QPState(newValues, duals, state.workingSet, true, state.iterations+1);
}
else {
// Inactivate the leaving constraint
InequalityFactorGraph newWorkingSet = state.workingSet;
newWorkingSet.at(leavingFactor)->inactivate();
return QPState(newValues, duals, newWorkingSet, false, state.iterations+1);
}
}
else {
// If we CAN make some progress, i.e. p_k != 0
// Adapt stepsize if some inactive constraints complain about this move
double alpha;
int factorIx;
VectorValues p = newValues - state.values;
boost::tie(alpha, factorIx) = // using 16.41
computeStepSize(state.workingSet, state.values, p);
if (debug)
cout << "alpha, factorIx: " << alpha << " " << factorIx << " "
<< endl;
// also add to the working set the one that complains the most
InequalityFactorGraph newWorkingSet = state.workingSet;
if (factorIx >= 0)
newWorkingSet.at(factorIx)->activate();
// step!
newValues = state.values + alpha * p;
return QPState(newValues, state.duals, newWorkingSet, false, state.iterations+1);
}
}
//******************************************************************************
InequalityFactorGraph QPSolver::identifyActiveConstraints(
const InequalityFactorGraph& inequalities,
const VectorValues& initialValues, const VectorValues& duals, bool useWarmStart) const {
InequalityFactorGraph workingSet;
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, inequalities) {
LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
if (useWarmStart == true && duals.exists(workingFactor->dualKey())) {
workingFactor->activate();
}
else {
if (useWarmStart == true && duals.size() > 0) {
workingFactor->inactivate();
} else {
double error = workingFactor->error(initialValues);
// TODO: find a feasible initial point for QPSolver.
// For now, we just throw an exception, since we don't have an LPSolver to do this yet
if (error > 0)
throw InfeasibleInitialValues();
if (fabs(error)<1e-7) {
workingFactor->activate();
}
else {
workingFactor->inactivate();
}
}
}
workingSet.push_back(workingFactor);
}
return workingSet;
}
//******************************************************************************
pair<VectorValues, VectorValues> QPSolver::optimize(
const VectorValues& initialValues, const VectorValues& duals, bool useWarmStart) const {
// Initialize workingSet from the feasible initialValues
InequalityFactorGraph workingSet =
identifyActiveConstraints(qp_.inequalities, initialValues, duals, useWarmStart);
QPState state(initialValues, duals, workingSet, false, 0);
/// main loop of the solver
while (!state.converged) {
state = iterate(state);
}
return make_pair(state.values, state.duals);
}
} /* namespace gtsam */