89 lines
3.5 KiB
C++
89 lines
3.5 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file Pose2SLAMExampleExpressions.cpp
|
|
* @brief Expressions version of Pose2SLAMExample.cpp
|
|
* @date Oct 2, 2014
|
|
* @author Frank Dellaert
|
|
* @author Yong Dian Jian
|
|
*/
|
|
|
|
// The two new headers that allow using our Automatic Differentiation Expression framework
|
|
#include <gtsam/slam/expressions.h>
|
|
#include <gtsam/nonlinear/ExpressionFactorGraph.h>
|
|
|
|
// Header order is close to far
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
|
#include <gtsam/nonlinear/Marginals.h>
|
|
#include <gtsam/nonlinear/Values.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
#include <gtsam/inference/Key.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
int main(int argc, char** argv) {
|
|
|
|
// 1. Create a factor graph container and add factors to it
|
|
ExpressionFactorGraph graph;
|
|
|
|
// Create Expressions for unknowns
|
|
Pose2_ x1(1), x2(2), x3(3), x4(4), x5(5);
|
|
|
|
// 2a. Add a prior on the first pose, setting it to the origin
|
|
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
|
|
graph.addExpressionFactor(x1, Pose2(0, 0, 0), priorNoise);
|
|
|
|
// For simplicity, we will use the same noise model for odometry and loop closures
|
|
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
|
|
|
|
// 2b. Add odometry factors
|
|
graph.addExpressionFactor(between(x1,x2), Pose2(2, 0, 0 ), model);
|
|
graph.addExpressionFactor(between(x2,x3), Pose2(2, 0, M_PI_2), model);
|
|
graph.addExpressionFactor(between(x3,x4), Pose2(2, 0, M_PI_2), model);
|
|
graph.addExpressionFactor(between(x4,x5), Pose2(2, 0, M_PI_2), model);
|
|
|
|
// 2c. Add the loop closure constraint
|
|
graph.addExpressionFactor(between(x5,x2), Pose2(2, 0, M_PI_2), model);
|
|
graph.print("\nFactor Graph:\n"); // print
|
|
|
|
// 3. Create the data structure to hold the initialEstimate estimate to the solution
|
|
// For illustrative purposes, these have been deliberately set to incorrect values
|
|
Values initialEstimate;
|
|
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2 ));
|
|
initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2 ));
|
|
initialEstimate.insert(3, Pose2(4.1, 0.1, M_PI_2));
|
|
initialEstimate.insert(4, Pose2(4.0, 2.0, M_PI ));
|
|
initialEstimate.insert(5, Pose2(2.1, 2.1, -M_PI_2));
|
|
initialEstimate.print("\nInitial Estimate:\n"); // print
|
|
|
|
// 4. Optimize the initial values using a Gauss-Newton nonlinear optimizer
|
|
GaussNewtonParams parameters;
|
|
parameters.relativeErrorTol = 1e-5;
|
|
parameters.maxIterations = 100;
|
|
GaussNewtonOptimizer optimizer(graph, initialEstimate, parameters);
|
|
Values result = optimizer.optimize();
|
|
result.print("Final Result:\n");
|
|
|
|
// 5. Calculate and print marginal covariances for all variables
|
|
cout.precision(3);
|
|
Marginals marginals(graph, result);
|
|
cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
|
|
cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
|
|
cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;
|
|
cout << "x4 covariance:\n" << marginals.marginalCovariance(4) << endl;
|
|
cout << "x5 covariance:\n" << marginals.marginalCovariance(5) << endl;
|
|
|
|
return 0;
|
|
}
|