608 lines
19 KiB
Mathematica
608 lines
19 KiB
Mathematica
(* Content-type: application/vnd.wolfram.mathematica *)
|
|
|
|
(*** Wolfram Notebook File ***)
|
|
(* http://www.wolfram.com/nb *)
|
|
|
|
(* CreatedBy='Mathematica 8.0' *)
|
|
|
|
(*CacheID: 234*)
|
|
(* Internal cache information:
|
|
NotebookFileLineBreakTest
|
|
NotebookFileLineBreakTest
|
|
NotebookDataPosition[ 157, 7]
|
|
NotebookDataLength[ 18933, 598]
|
|
NotebookOptionsPosition[ 18110, 565]
|
|
NotebookOutlinePosition[ 18464, 581]
|
|
CellTagsIndexPosition[ 18421, 578]
|
|
WindowFrame->Normal*)
|
|
|
|
(* Beginning of Notebook Content *)
|
|
Notebook[{
|
|
Cell[TextData[{
|
|
"The \[OpenCurlyQuote]right trivialised\[CloseCurlyQuote] tangent of the \
|
|
exponential map, ",
|
|
Cell[BoxData[
|
|
FormBox["dexpR", TraditionalForm]],
|
|
FormatType->"TraditionalForm"],
|
|
", according to Iserles05an, formula 2.42, pg. 32 can be written as\n\t",
|
|
Cell[BoxData[
|
|
FormBox[GridBox[{
|
|
{"\t"},
|
|
{
|
|
RowBox[{
|
|
RowBox[{
|
|
RowBox[{"g", "'"}],
|
|
SuperscriptBox["g",
|
|
RowBox[{"-", "1"}]]}], "=",
|
|
RowBox[{
|
|
SubscriptBox["dexpR", "\[Omega]"], "(",
|
|
RowBox[{"\[Omega]", "'"}], ")"}]}]}
|
|
}], TraditionalForm]],
|
|
FormatType->"TraditionalForm"],
|
|
"\nwhere ",
|
|
Cell[BoxData[
|
|
FormBox[
|
|
RowBox[{"g", "=",
|
|
RowBox[{"exp", "(", "\[Omega]", ")"}]}], TraditionalForm]],
|
|
FormatType->"TraditionalForm"],
|
|
", and ",
|
|
Cell[BoxData[
|
|
FormBox[
|
|
RowBox[{
|
|
RowBox[{"g", "'"}], "=",
|
|
RowBox[{
|
|
RowBox[{"exp", "'"}],
|
|
RowBox[{"(", "\[Omega]", ")"}]}]}], TraditionalForm]],
|
|
FormatType->"TraditionalForm"],
|
|
".\nCompare this to the left Jacobian matrix ",
|
|
Cell[BoxData[
|
|
FormBox[
|
|
SubscriptBox["J", "l"], TraditionalForm]],
|
|
FormatType->"TraditionalForm"],
|
|
" in Chirikjian11book2, pg. 26, we see that ",
|
|
Cell[BoxData[
|
|
FormBox["dexpR", TraditionalForm]],
|
|
FormatType->"TraditionalForm"],
|
|
" and ",
|
|
Cell[BoxData[
|
|
FormBox[
|
|
SubscriptBox["J", "l"], TraditionalForm]],
|
|
FormatType->"TraditionalForm"],
|
|
" are the same.\n\nHence, be careful, Iserles\[CloseCurlyQuote]s \
|
|
\[OpenCurlyQuote]",
|
|
StyleBox["right",
|
|
FontWeight->"Bold"],
|
|
" trivialised\[CloseCurlyQuote] tangent of the exponential map ",
|
|
Cell[BoxData[
|
|
FormBox["dexpR", TraditionalForm]],
|
|
FormatType->"TraditionalForm"],
|
|
" is in fact Chirikjian\[CloseCurlyQuote]s ",
|
|
StyleBox["left",
|
|
FontWeight->"Bold"],
|
|
" Jacobian matrix ",
|
|
Cell[BoxData[
|
|
FormBox[
|
|
SubscriptBox["J", "l"], TraditionalForm]],
|
|
FormatType->"TraditionalForm"],
|
|
"!!!\n\nWe want to compute the s \[OpenCurlyQuote]",
|
|
StyleBox["left",
|
|
FontWeight->"Bold"],
|
|
" trivialised\[CloseCurlyQuote] tangent of the exponential map, ",
|
|
Cell[BoxData[
|
|
FormBox["dexpL", TraditionalForm]],
|
|
FormatType->"TraditionalForm"],
|
|
", for SE2, hence, we need to use Chirikjian\[CloseCurlyQuote]s ",
|
|
StyleBox["right",
|
|
FontWeight->"Bold"],
|
|
" Jacobian matrix ",
|
|
Cell[BoxData[
|
|
FormBox[
|
|
SubscriptBox["J", "r"], TraditionalForm]],
|
|
FormatType->"TraditionalForm"],
|
|
" formula in Chirikjian11book2, pg. 36."
|
|
}], "Text",
|
|
CellChangeTimes->{{3.6279967389044943`*^9, 3.6279968865058002`*^9}, {
|
|
3.6279969695759087`*^9, 3.6279974871811028`*^9}, 3.62799757389325*^9}],
|
|
|
|
Cell[BoxData[{
|
|
RowBox[{"Clear", "[", "J", "]"}], "\[IndentingNewLine]",
|
|
RowBox[{
|
|
RowBox[{"J", "[", "\[Alpha]_", "]"}], ":=",
|
|
RowBox[{"{",
|
|
RowBox[{
|
|
RowBox[{"{",
|
|
RowBox[{
|
|
RowBox[{
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}], "/", "\[Alpha]"}], ",",
|
|
RowBox[{
|
|
RowBox[{"(",
|
|
RowBox[{"1", "-",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}], "/", "\[Alpha]"}],
|
|
",", " ",
|
|
RowBox[{
|
|
RowBox[{"(",
|
|
RowBox[{
|
|
RowBox[{"\[Alpha]", " ",
|
|
SubscriptBox["v", "1"]}], "-",
|
|
SubscriptBox["v", "2"], "+",
|
|
RowBox[{
|
|
SubscriptBox["v", "2"],
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], "-",
|
|
RowBox[{
|
|
SubscriptBox["v", "1"],
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}]}]}], ")"}], "/",
|
|
SuperscriptBox["\[Alpha]", "2"]}]}], "}"}], ",",
|
|
RowBox[{"{",
|
|
RowBox[{
|
|
RowBox[{
|
|
RowBox[{"-",
|
|
RowBox[{"(",
|
|
RowBox[{"1", "-",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}]}], "/", "\[Alpha]"}],
|
|
",",
|
|
RowBox[{
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}], "/", "\[Alpha]"}], ",", " ",
|
|
RowBox[{
|
|
RowBox[{"(",
|
|
RowBox[{
|
|
SubscriptBox["v", "1"], "+",
|
|
RowBox[{"\[Alpha]", " ",
|
|
SubscriptBox["v", "2"]}], "-",
|
|
RowBox[{
|
|
SubscriptBox["v", "1"],
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], "-",
|
|
RowBox[{
|
|
SubscriptBox["v", "2"],
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}]}]}], ")"}], "/",
|
|
SuperscriptBox["\[Alpha]", "2"]}]}], "}"}], ",",
|
|
RowBox[{"{",
|
|
RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], "}"}]}]}], "Input",
|
|
CellChangeTimes->{{3.627993817228732*^9, 3.6279939547434673`*^9}, {
|
|
3.627993986274671*^9, 3.6279940386007967`*^9}, {3.627995391081044*^9,
|
|
3.627995412846286*^9}, 3.6279954452391644`*^9, {3.627995531089571*^9,
|
|
3.6279955341932592`*^9}, {3.627996429604282*^9, 3.62799643077184*^9}}],
|
|
|
|
Cell[CellGroupData[{
|
|
|
|
Cell[BoxData[
|
|
RowBox[{
|
|
RowBox[{
|
|
RowBox[{"Jinv", "[", "\[Alpha]_", "]"}], "=",
|
|
RowBox[{"Inverse", "[",
|
|
RowBox[{"J", "[", "\[Alpha]", "]"}], "]"}]}],
|
|
"\[IndentingNewLine]"}]], "Input",
|
|
CellChangeTimes->{
|
|
3.627995475343099*^9, {3.627995548533964*^9, 3.627995559455151*^9}, {
|
|
3.627996438504909*^9, 3.6279964431657553`*^9}}],
|
|
|
|
Cell[BoxData[
|
|
RowBox[{"{",
|
|
RowBox[{
|
|
RowBox[{"{",
|
|
RowBox[{
|
|
FractionBox[
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}],
|
|
RowBox[{"\[Alpha]", " ",
|
|
RowBox[{"(",
|
|
RowBox[{
|
|
FractionBox["1",
|
|
SuperscriptBox["\[Alpha]", "2"]], "-",
|
|
FractionBox[
|
|
RowBox[{"2", " ",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
SuperscriptBox[
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
SuperscriptBox[
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
|
|
SuperscriptBox["\[Alpha]", "2"]]}], ")"}]}]], ",",
|
|
FractionBox[
|
|
RowBox[{
|
|
RowBox[{"-",
|
|
FractionBox["1", "\[Alpha]"]}], "+",
|
|
FractionBox[
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}], "\[Alpha]"]}],
|
|
RowBox[{
|
|
FractionBox["1",
|
|
SuperscriptBox["\[Alpha]", "2"]], "-",
|
|
FractionBox[
|
|
RowBox[{"2", " ",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
SuperscriptBox[
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
SuperscriptBox[
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
|
|
SuperscriptBox["\[Alpha]", "2"]]}]], ",",
|
|
FractionBox[
|
|
RowBox[{
|
|
FractionBox[
|
|
SubscriptBox["v", "1"],
|
|
SuperscriptBox["\[Alpha]", "3"]], "-",
|
|
FractionBox[
|
|
RowBox[{"2", " ",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
|
|
SubscriptBox["v", "1"]}],
|
|
SuperscriptBox["\[Alpha]", "3"]], "+",
|
|
FractionBox[
|
|
RowBox[{
|
|
SuperscriptBox[
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"], " ",
|
|
SubscriptBox["v", "1"]}],
|
|
SuperscriptBox["\[Alpha]", "3"]], "-",
|
|
FractionBox[
|
|
RowBox[{
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}], " ",
|
|
SubscriptBox["v", "1"]}],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
RowBox[{
|
|
SuperscriptBox[
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"], " ",
|
|
SubscriptBox["v", "1"]}],
|
|
SuperscriptBox["\[Alpha]", "3"]], "+",
|
|
FractionBox[
|
|
SubscriptBox["v", "2"],
|
|
SuperscriptBox["\[Alpha]", "2"]], "-",
|
|
FractionBox[
|
|
RowBox[{
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
|
|
SubscriptBox["v", "2"]}],
|
|
SuperscriptBox["\[Alpha]", "2"]]}],
|
|
RowBox[{
|
|
FractionBox["1",
|
|
SuperscriptBox["\[Alpha]", "2"]], "-",
|
|
FractionBox[
|
|
RowBox[{"2", " ",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
SuperscriptBox[
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
SuperscriptBox[
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
|
|
SuperscriptBox["\[Alpha]", "2"]]}]]}], "}"}], ",",
|
|
RowBox[{"{",
|
|
RowBox[{
|
|
FractionBox[
|
|
RowBox[{
|
|
FractionBox["1", "\[Alpha]"], "-",
|
|
FractionBox[
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}], "\[Alpha]"]}],
|
|
RowBox[{
|
|
FractionBox["1",
|
|
SuperscriptBox["\[Alpha]", "2"]], "-",
|
|
FractionBox[
|
|
RowBox[{"2", " ",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
SuperscriptBox[
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
SuperscriptBox[
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
|
|
SuperscriptBox["\[Alpha]", "2"]]}]], ",",
|
|
FractionBox[
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}],
|
|
RowBox[{"\[Alpha]", " ",
|
|
RowBox[{"(",
|
|
RowBox[{
|
|
FractionBox["1",
|
|
SuperscriptBox["\[Alpha]", "2"]], "-",
|
|
FractionBox[
|
|
RowBox[{"2", " ",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
SuperscriptBox[
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
SuperscriptBox[
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
|
|
SuperscriptBox["\[Alpha]", "2"]]}], ")"}]}]], ",",
|
|
FractionBox[
|
|
RowBox[{
|
|
RowBox[{"-",
|
|
FractionBox[
|
|
SubscriptBox["v", "1"],
|
|
SuperscriptBox["\[Alpha]", "2"]]}], "+",
|
|
FractionBox[
|
|
RowBox[{
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
|
|
SubscriptBox["v", "1"]}],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
SubscriptBox["v", "2"],
|
|
SuperscriptBox["\[Alpha]", "3"]], "-",
|
|
FractionBox[
|
|
RowBox[{"2", " ",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
|
|
SubscriptBox["v", "2"]}],
|
|
SuperscriptBox["\[Alpha]", "3"]], "+",
|
|
FractionBox[
|
|
RowBox[{
|
|
SuperscriptBox[
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"], " ",
|
|
SubscriptBox["v", "2"]}],
|
|
SuperscriptBox["\[Alpha]", "3"]], "-",
|
|
FractionBox[
|
|
RowBox[{
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}], " ",
|
|
SubscriptBox["v", "2"]}],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
RowBox[{
|
|
SuperscriptBox[
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"], " ",
|
|
SubscriptBox["v", "2"]}],
|
|
SuperscriptBox["\[Alpha]", "3"]]}],
|
|
RowBox[{
|
|
FractionBox["1",
|
|
SuperscriptBox["\[Alpha]", "2"]], "-",
|
|
FractionBox[
|
|
RowBox[{"2", " ",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
SuperscriptBox[
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
|
|
SuperscriptBox["\[Alpha]", "2"]], "+",
|
|
FractionBox[
|
|
SuperscriptBox[
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
|
|
SuperscriptBox["\[Alpha]", "2"]]}]]}], "}"}], ",",
|
|
RowBox[{"{",
|
|
RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], "}"}]], "Output",
|
|
CellChangeTimes->{
|
|
3.627995560030972*^9, {3.627996412919798*^9, 3.627996444306521*^9}}]
|
|
}, Open ]],
|
|
|
|
Cell[CellGroupData[{
|
|
|
|
Cell[BoxData[
|
|
RowBox[{
|
|
RowBox[{
|
|
RowBox[{"Jinv", "[", "\[Alpha]", "]"}], "//", "Simplify"}], "//",
|
|
"MatrixForm"}]], "Input",
|
|
CellChangeTimes->{{3.627993835637863*^9, 3.627993839233502*^9}, {
|
|
3.627994046108457*^9, 3.627994058781851*^9}, {3.627995546842499*^9,
|
|
3.6279955664940767`*^9}}],
|
|
|
|
Cell[BoxData[
|
|
TagBox[
|
|
RowBox[{"(", "\[NoBreak]", GridBox[{
|
|
{
|
|
RowBox[{
|
|
FractionBox["1", "2"], " ", "\[Alpha]", " ",
|
|
RowBox[{"Cot", "[",
|
|
FractionBox["\[Alpha]", "2"], "]"}]}],
|
|
RowBox[{"-",
|
|
FractionBox["\[Alpha]", "2"]}],
|
|
FractionBox[
|
|
RowBox[{
|
|
RowBox[{
|
|
RowBox[{"(",
|
|
RowBox[{
|
|
RowBox[{"-", "2"}], "+",
|
|
RowBox[{"2", " ",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], "+",
|
|
RowBox[{"\[Alpha]", " ",
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}]}]}], ")"}], " ",
|
|
SubscriptBox["v", "1"]}], "+",
|
|
RowBox[{"\[Alpha]", " ",
|
|
RowBox[{"(",
|
|
RowBox[{
|
|
RowBox[{"-", "1"}], "+",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}], " ",
|
|
SubscriptBox["v", "2"]}]}],
|
|
RowBox[{"2", " ", "\[Alpha]", " ",
|
|
RowBox[{"(",
|
|
RowBox[{
|
|
RowBox[{"-", "1"}], "+",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}]}]]},
|
|
{
|
|
FractionBox["\[Alpha]", "2"],
|
|
RowBox[{
|
|
FractionBox["1", "2"], " ", "\[Alpha]", " ",
|
|
RowBox[{"Cot", "[",
|
|
FractionBox["\[Alpha]", "2"], "]"}]}],
|
|
FractionBox[
|
|
RowBox[{
|
|
RowBox[{
|
|
RowBox[{"(",
|
|
RowBox[{"\[Alpha]", "-",
|
|
RowBox[{"\[Alpha]", " ",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}]}], ")"}], " ",
|
|
SubscriptBox["v", "1"]}], "+",
|
|
RowBox[{
|
|
RowBox[{"(",
|
|
RowBox[{
|
|
RowBox[{"-", "2"}], "+",
|
|
RowBox[{"2", " ",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], "+",
|
|
RowBox[{"\[Alpha]", " ",
|
|
RowBox[{"Sin", "[", "\[Alpha]", "]"}]}]}], ")"}], " ",
|
|
SubscriptBox["v", "2"]}]}],
|
|
RowBox[{"2", " ", "\[Alpha]", " ",
|
|
RowBox[{"(",
|
|
RowBox[{
|
|
RowBox[{"-", "1"}], "+",
|
|
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}]}]]},
|
|
{"0", "0", "1"}
|
|
},
|
|
GridBoxAlignment->{
|
|
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
|
"RowsIndexed" -> {}},
|
|
GridBoxSpacings->{"Columns" -> {
|
|
Offset[0.27999999999999997`], {
|
|
Offset[0.7]},
|
|
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
|
Offset[0.2], {
|
|
Offset[0.4]},
|
|
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
|
|
Function[BoxForm`e$,
|
|
MatrixForm[BoxForm`e$]]]], "Output",
|
|
CellChangeTimes->{
|
|
3.627993840513033*^9, {3.62799404156531*^9, 3.6279940592345743`*^9},
|
|
3.627995567356995*^9, 3.627996415136314*^9, 3.6279964490074778`*^9}]
|
|
}, Open ]],
|
|
|
|
Cell[TextData[{
|
|
"In case ",
|
|
Cell[BoxData[
|
|
FormBox[
|
|
RowBox[{"\[Alpha]", "=", "0"}], TraditionalForm]],
|
|
FormatType->"TraditionalForm"],
|
|
", we compute the limits of ",
|
|
Cell[BoxData[
|
|
FormBox[
|
|
SubscriptBox["J", "r"], TraditionalForm]],
|
|
FormatType->"TraditionalForm"],
|
|
" and ",
|
|
Cell[BoxData[
|
|
FormBox[
|
|
SuperscriptBox[
|
|
SubscriptBox["J", "r"],
|
|
RowBox[{"-", "1"}]], TraditionalForm]],
|
|
FormatType->"TraditionalForm"],
|
|
" as follows"
|
|
}], "Text",
|
|
CellChangeTimes->{{3.627997495449997*^9, 3.627997524522543*^9}}],
|
|
|
|
Cell[CellGroupData[{
|
|
|
|
Cell[BoxData[
|
|
RowBox[{
|
|
RowBox[{
|
|
RowBox[{"Limit", "[",
|
|
RowBox[{
|
|
RowBox[{"Jinv", "[", "\[Alpha]", "]"}], ",",
|
|
RowBox[{"\[Alpha]", "\[Rule]", "0"}]}], "]"}], "//", "Simplify"}], "//",
|
|
"MatrixForm"}]], "Input",
|
|
CellChangeTimes->{{3.627995572179821*^9, 3.627995606373824*^9}}],
|
|
|
|
Cell[BoxData[
|
|
TagBox[
|
|
RowBox[{"(", "\[NoBreak]", GridBox[{
|
|
{"1", "0",
|
|
FractionBox[
|
|
SubscriptBox["v", "2"], "2"]},
|
|
{"0", "1",
|
|
RowBox[{"-",
|
|
FractionBox[
|
|
SubscriptBox["v", "1"], "2"]}]},
|
|
{"0", "0", "1"}
|
|
},
|
|
GridBoxAlignment->{
|
|
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
|
"RowsIndexed" -> {}},
|
|
GridBoxSpacings->{"Columns" -> {
|
|
Offset[0.27999999999999997`], {
|
|
Offset[0.7]},
|
|
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
|
Offset[0.2], {
|
|
Offset[0.4]},
|
|
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
|
|
Function[BoxForm`e$,
|
|
MatrixForm[BoxForm`e$]]]], "Output",
|
|
CellChangeTimes->{{3.627995585954463*^9, 3.627995606858135*^9},
|
|
3.6279964178087473`*^9, 3.6279964634008904`*^9}]
|
|
}, Open ]],
|
|
|
|
Cell[CellGroupData[{
|
|
|
|
Cell[BoxData[
|
|
RowBox[{
|
|
RowBox[{
|
|
RowBox[{"Limit", "[",
|
|
RowBox[{
|
|
RowBox[{"J", "[", "\[Alpha]", "]"}], ",",
|
|
RowBox[{"\[Alpha]", "\[Rule]", "0"}]}], "]"}], "//", "Simplify"}], "//",
|
|
"MatrixForm"}]], "Input",
|
|
CellChangeTimes->{{3.6279956527343893`*^9, 3.627995660697241*^9}}],
|
|
|
|
Cell[BoxData[
|
|
TagBox[
|
|
RowBox[{"(", "\[NoBreak]", GridBox[{
|
|
{"1", "0",
|
|
RowBox[{"-",
|
|
FractionBox[
|
|
SubscriptBox["v", "2"], "2"]}]},
|
|
{"0", "1",
|
|
FractionBox[
|
|
SubscriptBox["v", "1"], "2"]},
|
|
{"0", "0", "1"}
|
|
},
|
|
GridBoxAlignment->{
|
|
"Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
|
|
"RowsIndexed" -> {}},
|
|
GridBoxSpacings->{"Columns" -> {
|
|
Offset[0.27999999999999997`], {
|
|
Offset[0.7]},
|
|
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
|
|
Offset[0.2], {
|
|
Offset[0.4]},
|
|
Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
|
|
Function[BoxForm`e$,
|
|
MatrixForm[BoxForm`e$]]]], "Output",
|
|
CellChangeTimes->{{3.627995653969245*^9, 3.627995661346282*^9},
|
|
3.627996419383007*^9, 3.627996465705708*^9}]
|
|
}, Open ]],
|
|
|
|
Cell[BoxData[""], "Input",
|
|
CellChangeTimes->{{3.627995694633294*^9, 3.627995695945466*^9}}]
|
|
},
|
|
WindowSize->{654, 852},
|
|
WindowMargins->{{Automatic, 27}, {Automatic, 0}},
|
|
FrontEndVersion->"8.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (October 5, \
|
|
2011)",
|
|
StyleDefinitions->"Default.nb"
|
|
]
|
|
(* End of Notebook Content *)
|
|
|
|
(* Internal cache information *)
|
|
(*CellTagsOutline
|
|
CellTagsIndex->{}
|
|
*)
|
|
(*CellTagsIndex
|
|
CellTagsIndex->{}
|
|
*)
|
|
(*NotebookFileOutline
|
|
Notebook[{
|
|
Cell[557, 20, 2591, 84, 197, "Text"],
|
|
Cell[3151, 106, 2022, 56, 68, "Input"],
|
|
Cell[CellGroupData[{
|
|
Cell[5198, 166, 343, 9, 43, "Input"],
|
|
Cell[5544, 177, 6519, 190, 290, "Output"]
|
|
}, Open ]],
|
|
Cell[CellGroupData[{
|
|
Cell[12100, 372, 298, 7, 27, "Input"],
|
|
Cell[12401, 381, 2665, 76, 99, "Output"]
|
|
}, Open ]],
|
|
Cell[15081, 460, 535, 20, 29, "Text"],
|
|
Cell[CellGroupData[{
|
|
Cell[15641, 484, 297, 8, 27, "Input"],
|
|
Cell[15941, 494, 863, 25, 91, "Output"]
|
|
}, Open ]],
|
|
Cell[CellGroupData[{
|
|
Cell[16841, 524, 296, 8, 27, "Input"],
|
|
Cell[17140, 534, 859, 25, 91, "Output"]
|
|
}, Open ]],
|
|
Cell[18014, 562, 92, 1, 27, "Input"]
|
|
}
|
|
]
|
|
*)
|
|
|
|
(* End of internal cache information *)
|