gtsam/tests/testIterative.cpp

144 lines
4.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testIterative.cpp
* @brief Unit tests for iterative methods
* @author Frank Dellaert
**/
#include <tests/smallExample.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/iterative.h>
#include <gtsam/geometry/Pose2.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using namespace example;
using symbol_shorthand::X; // to create pose keys
using symbol_shorthand::L; // to create landmark keys
static ConjugateGradientParameters parameters;
// add following below to add printing:
// parameters.verbosity_ = ConjugateGradientParameters::COMPLEXITY;
/* ************************************************************************* */
TEST( Iterative, steepestDescent )
{
// Create factor graph
GaussianFactorGraph fg = createGaussianFactorGraph();
// eliminate and solve
VectorValues expected = fg.optimize();
// Do gradient descent
VectorValues zero = VectorValues::Zero(expected); // TODO, how do we do this normally?
VectorValues actual = steepestDescent(fg, zero, parameters);
CHECK(assert_equal(expected,actual,1e-2));
}
/* ************************************************************************* */
TEST( Iterative, conjugateGradientDescent )
{
// Create factor graph
GaussianFactorGraph fg = createGaussianFactorGraph();
// eliminate and solve
VectorValues expected = fg.optimize();
// get matrices
Matrix A;
Vector b;
Vector x0 = Z_6x1;
std::tie(A, b) = fg.jacobian();
Vector expectedX = (Vector(6) << -0.1, 0.1, -0.1, -0.1, 0.1, -0.2).finished();
// Do conjugate gradient descent, System version
System Ab(A, b);
Vector actualX = conjugateGradientDescent(Ab, x0, parameters);
CHECK(assert_equal(expectedX,actualX,1e-9));
// Do conjugate gradient descent, Matrix version
Vector actualX2 = conjugateGradientDescent(A, b, x0, parameters);
CHECK(assert_equal(expectedX,actualX2,1e-9));
// Do conjugate gradient descent on factor graph
VectorValues zero = VectorValues::Zero(expected);
VectorValues actual = conjugateGradientDescent(fg, zero, parameters);
CHECK(assert_equal(expected,actual,1e-2));
}
/* ************************************************************************* */
TEST( Iterative, conjugateGradientDescent_hard_constraint )
{
Values config;
Pose2 pose1 = Pose2(0.,0.,0.);
config.insert(X(1), pose1);
config.insert(X(2), Pose2(1.5,0.,0.));
NonlinearFactorGraph graph;
graph += NonlinearEquality<Pose2>(X(1), pose1);
graph += BetweenFactor<Pose2>(X(1),X(2), Pose2(1.,0.,0.), noiseModel::Isotropic::Sigma(3, 1));
std::shared_ptr<GaussianFactorGraph> fg = graph.linearize(config);
VectorValues zeros = config.zeroVectors();
ConjugateGradientParameters parameters;
parameters.setEpsilon_abs(1e-3);
parameters.setEpsilon_rel(1e-5);
parameters.setMaxIterations(100);
VectorValues actual = conjugateGradientDescent(*fg, zeros, parameters);
VectorValues expected;
expected.insert(X(1), Z_3x1);
expected.insert(X(2), Vector3(-0.5,0.,0.));
CHECK(assert_equal(expected, actual));
}
/* ************************************************************************* */
TEST( Iterative, conjugateGradientDescent_soft_constraint )
{
Values config;
config.insert(X(1), Pose2(0.,0.,0.));
config.insert(X(2), Pose2(1.5,0.,0.));
NonlinearFactorGraph graph;
graph.addPrior(X(1), Pose2(0.,0.,0.), noiseModel::Isotropic::Sigma(3, 1e-10));
graph += BetweenFactor<Pose2>(X(1),X(2), Pose2(1.,0.,0.), noiseModel::Isotropic::Sigma(3, 1));
std::shared_ptr<GaussianFactorGraph> fg = graph.linearize(config);
VectorValues zeros = config.zeroVectors();
ConjugateGradientParameters parameters;
parameters.setEpsilon_abs(1e-3);
parameters.setEpsilon_rel(1e-5);
parameters.setMaxIterations(100);
VectorValues actual = conjugateGradientDescent(*fg, zeros, parameters);
VectorValues expected;
expected.insert(X(1), Z_3x1);
expected.insert(X(2), Vector3(-0.5,0.,0.));
CHECK(assert_equal(expected, actual));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */