gtsam/gtsam/geometry/Rot3.cpp

321 lines
10 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Rot3.cpp
* @brief Rotation, common code between Rotation matrix and Quaternion
* @author Alireza Fathi
* @author Christian Potthast
* @author Frank Dellaert
* @author Richard Roberts
* @author Varun Agrawal
*/
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/SO3.h>
#include <boost/math/constants/constants.hpp>
#include <cmath>
#include <random>
using namespace std;
namespace gtsam {
/* ************************************************************************* */
void Rot3::print(const std::string& s) const {
cout << (s.empty() ? "R: " : s + " ");
gtsam::print(static_cast<Matrix>(matrix()));
}
/* ************************************************************************* */
Rot3 Rot3::Random(std::mt19937& rng) {
Unit3 axis = Unit3::Random(rng);
uniform_real_distribution<double> randomAngle(-M_PI, M_PI);
double angle = randomAngle(rng);
return AxisAngle(axis, angle);
}
/* ************************************************************************* */
Rot3 Rot3::AlignPair(const Unit3& axis, const Unit3& a_p, const Unit3& b_p) {
// if a_p is already aligned with b_p, return the identity rotation
if (std::abs(a_p.dot(b_p)) > 0.999999999) {
return Rot3();
}
// Check axis was not degenerate cross product
const Vector3 z = axis.unitVector();
if (z.hasNaN())
throw std::runtime_error("AlignSinglePair: axis has Nans");
// Now, calculate rotation that takes b_p to a_p
const Matrix3 P = I_3x3 - z * z.transpose(); // orthogonal projector
const Vector3 a_po = P * a_p.unitVector(); // point in a orthogonal to axis
const Vector3 b_po = P * b_p.unitVector(); // point in b orthogonal to axis
const Vector3 x = a_po.normalized(); // x-axis in axis-orthogonal plane, along a_p vector
const Vector3 y = z.cross(x); // y-axis in axis-orthogonal plane
const double u = x.dot(b_po); // x-coordinate for b_po
const double v = y.dot(b_po); // y-coordinate for b_po
double angle = std::atan2(v, u);
return Rot3::AxisAngle(z, -angle);
}
/* ************************************************************************* */
Rot3 Rot3::AlignTwoPairs(const Unit3& a_p, const Unit3& b_p, //
const Unit3& a_q, const Unit3& b_q) {
// there are three frames in play:
// a: the first frame in which p and q are measured
// b: the second frame in which p and q are measured
// i: intermediate, after aligning first pair
// First, find rotation around that aligns a_p and b_p
Rot3 i_R_b = AlignPair(a_p.cross(b_p), a_p, b_p);
// Rotate points in frame b to the intermediate frame,
// in which we expect the point p to be aligned now
Unit3 i_q = i_R_b * b_q;
assert(assert_equal(a_p, i_R_b * b_p, 1e-6));
// Now align second pair: we need to align i_q to a_q
Rot3 a_R_i = AlignPair(a_p, a_q, i_q);
assert(assert_equal(a_p, a_R_i * a_p, 1e-6));
assert(assert_equal(a_q, a_R_i * i_q, 1e-6));
// The desired rotation is the product of both
Rot3 a_R_b = a_R_i * i_R_b;
return a_R_b;
}
/* ************************************************************************* */
bool Rot3::equals(const Rot3 & R, double tol) const {
return equal_with_abs_tol(matrix(), R.matrix(), tol);
}
/* ************************************************************************* */
Point3 Rot3::operator*(const Point3& p) const {
return rotate(p);
}
/* ************************************************************************* */
Unit3 Rot3::rotate(const Unit3& p,
OptionalJacobian<2,3> HR, OptionalJacobian<2,2> Hp) const {
Matrix32 Dp;
Unit3 q = Unit3(rotate(p.point3(Hp ? &Dp : 0)));
if (Hp) *Hp = q.basis().transpose() * matrix() * Dp;
if (HR) *HR = -q.basis().transpose() * matrix() * p.skew();
return q;
}
/* ************************************************************************* */
Unit3 Rot3::unrotate(const Unit3& p,
OptionalJacobian<2,3> HR, OptionalJacobian<2,2> Hp) const {
Matrix32 Dp;
Unit3 q = Unit3(unrotate(p.point3(Dp)));
if (Hp) *Hp = q.basis().transpose() * matrix().transpose () * Dp;
if (HR) *HR = q.basis().transpose() * q.skew();
return q;
}
/* ************************************************************************* */
Unit3 Rot3::operator*(const Unit3& p) const {
return rotate(p);
}
/* ************************************************************************* */
// see doc/math.lyx, SO(3) section
Point3 Rot3::unrotate(const Point3& p, OptionalJacobian<3,3> H1,
OptionalJacobian<3,3> H2) const {
const Matrix3& Rt = transpose();
Point3 q(Rt * p); // q = Rt*p
const double wx = q.x(), wy = q.y(), wz = q.z();
if (H1)
*H1 << 0.0, -wz, +wy, +wz, 0.0, -wx, -wy, +wx, 0.0;
if (H2)
*H2 = Rt;
return q;
}
/* ************************************************************************* */
Point3 Rot3::column(int index) const{
if(index == 3)
return r3();
else if(index == 2)
return r2();
else if(index == 1)
return r1(); // default returns r1
else
throw invalid_argument("Argument to Rot3::column must be 1, 2, or 3");
}
/* ************************************************************************* */
Vector3 Rot3::xyz(OptionalJacobian<3, 3> H) const {
Matrix3 I;Vector3 q;
if (H) {
Matrix93 mH;
const auto m = matrix();
#ifdef GTSAM_USE_QUATERNIONS
SO3{m}.vec(mH);
#else
rot_.vec(mH);
#endif
Matrix39 qHm;
std::tie(I, q) = RQ(m, qHm);
// TODO : Explore whether this expression can be optimized as both
// qHm and mH are super-sparse
*H = qHm * mH;
} else
std::tie(I, q) = RQ(matrix());
return q;
}
/* ************************************************************************* */
Vector3 Rot3::ypr(OptionalJacobian<3, 3> H) const {
Vector3 q = xyz(H);
if (H) H->row(0).swap(H->row(2));
return Vector3(q(2),q(1),q(0));
}
/* ************************************************************************* */
Vector3 Rot3::rpy(OptionalJacobian<3, 3> H) const { return xyz(H); }
/* ************************************************************************* */
double Rot3::roll(OptionalJacobian<1, 3> H) const {
double r;
if (H) {
Matrix3 xyzH;
r = xyz(xyzH)(0);
*H = xyzH.row(0);
} else
r = xyz()(0);
return r;
}
/* ************************************************************************* */
double Rot3::pitch(OptionalJacobian<1, 3> H) const {
double p;
if (H) {
Matrix3 xyzH;
p = xyz(xyzH)(1);
*H = xyzH.row(1);
} else
p = xyz()(1);
return p;
}
/* ************************************************************************* */
double Rot3::yaw(OptionalJacobian<1, 3> H) const {
double y;
if (H) {
Matrix3 xyzH;
y = xyz(xyzH)(2);
*H = xyzH.row(2);
} else
y = xyz()(2);
return y;
}
/* ************************************************************************* */
pair<Unit3, double> Rot3::axisAngle() const {
const Vector3 omega = Rot3::Logmap(*this);
return std::pair<Unit3, double>(Unit3(omega), omega.norm());
}
/* ************************************************************************* */
Matrix3 Rot3::ExpmapDerivative(const Vector3& x) {
return SO3::ExpmapDerivative(x);
}
/* ************************************************************************* */
Matrix3 Rot3::LogmapDerivative(const Vector3& x) {
return SO3::LogmapDerivative(x);
}
/* ************************************************************************* */
pair<Matrix3, Vector3> RQ(const Matrix3& A, OptionalJacobian<3, 9> H) {
const double x = -atan2(-A(2, 1), A(2, 2));
const auto Qx = Rot3::Rx(-x).matrix();
const Matrix3 B = A * Qx;
const double y = -atan2(B(2, 0), B(2, 2));
const auto Qy = Rot3::Ry(-y).matrix();
const Matrix3 C = B * Qy;
const double z = -atan2(-C(1, 0), C(1, 1));
const auto Qz = Rot3::Rz(-z).matrix();
const Matrix3 R = C * Qz;
if (H) {
if (std::abs(y - M_PI / 2) < 1e-2)
throw std::runtime_error(
"Rot3::RQ : Derivative undefined at singularity (gimbal lock)");
auto atan_d1 = [](double y, double x) { return x / (x * x + y * y); };
auto atan_d2 = [](double y, double x) { return -y / (x * x + y * y); };
const auto sx = -Qx(2, 1), cx = Qx(1, 1);
const auto sy = -Qy(0, 2), cy = Qy(0, 0);
*H = Matrix39::Zero();
// First, calculate the derivate of x
(*H)(0, 5) = atan_d1(A(2, 1), A(2, 2));
(*H)(0, 8) = atan_d2(A(2, 1), A(2, 2));
// Next, calculate the derivate of y. We have
// b20 = a20 and b22 = a21 * sx + a22 * cx
(*H)(1, 2) = -atan_d1(B(2, 0), B(2, 2));
const auto yHb22 = -atan_d2(B(2, 0), B(2, 2));
(*H)(1, 5) = yHb22 * sx;
(*H)(1, 8) = yHb22 * cx;
// Next, calculate the derivate of z. We have
// c10 = a10 * cy + a11 * sx * sy + a12 * cx * sy
// c11 = a11 * cx - a12 * sx
const auto c10Hx = (A(1, 1) * cx - A(1, 2) * sx) * sy;
const auto c10Hy = A(1, 2) * cx * cy + A(1, 1) * cy * sx - A(1, 0) * sy;
Vector9 c10HA = c10Hx * H->row(0) + c10Hy * H->row(1);
c10HA[1] = cy;
c10HA[4] = sx * sy;
c10HA[7] = cx * sy;
const auto c11Hx = -A(1, 2) * cx - A(1, 1) * sx;
Vector9 c11HA = c11Hx * H->row(0);
c11HA[4] = cx;
c11HA[7] = -sx;
H->block<1, 9>(2, 0) =
atan_d1(C(1, 0), C(1, 1)) * c10HA + atan_d2(C(1, 0), C(1, 1)) * c11HA;
}
const auto xyz = Vector3(x, y, z);
return make_pair(R, xyz);
}
/* ************************************************************************* */
ostream &operator<<(ostream &os, const Rot3& R) {
os << R.matrix().format(matlabFormat());
return os;
}
/* ************************************************************************* */
Rot3 Rot3::slerp(double t, const Rot3& other) const {
return interpolate(*this, other, t);
}
/* ************************************************************************* */
} // namespace gtsam