58 lines
1.9 KiB
C++
58 lines
1.9 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file Pose2SLAMExample_graph.cpp
|
|
* @brief Read graph from file and perform GraphSLAM
|
|
* @date June 3, 2012
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
// For an explanation of headers below, please see Pose2SLAMExample.cpp
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/nonlinear/Marginals.h>
|
|
|
|
// This new header allows us to read examples easily from .graph files
|
|
#include <gtsam/slam/dataset.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
int main (int argc, char** argv) {
|
|
|
|
// Read File, create graph and initial estimate
|
|
// we are in build/examples, data is in examples/Data
|
|
NonlinearFactorGraph::shared_ptr graph;
|
|
Values::shared_ptr initial;
|
|
SharedDiagonal model = noiseModel::Diagonal::Sigmas((Vector(3) << 0.05, 0.05, 5.0 * M_PI / 180.0).finished());
|
|
string graph_file = findExampleDataFile("w100.graph");
|
|
std::tie(graph, initial) = load2D(graph_file, model);
|
|
initial->print("Initial estimate:\n");
|
|
|
|
// Add a Gaussian prior on first poses
|
|
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
|
|
SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.01, 0.01, 0.01));
|
|
graph -> addPrior(0, priorMean, priorNoise);
|
|
|
|
// Single Step Optimization using Levenberg-Marquardt
|
|
Values result = LevenbergMarquardtOptimizer(*graph, *initial).optimize();
|
|
result.print("\nFinal result:\n");
|
|
|
|
// Plot the covariance of the last pose
|
|
Marginals marginals(*graph, result);
|
|
cout.precision(2);
|
|
cout << "\nP3:\n" << marginals.marginalCovariance(99) << endl;
|
|
|
|
return 0;
|
|
}
|