200 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			200 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C++
		
	
	
/*
 | 
						|
 * @file SimpleHelicopter.h
 | 
						|
 * @brief Implement SimpleHelicopter discrete dynamics model and variational integrator,
 | 
						|
 *        following [Kobilarov09siggraph]
 | 
						|
 * @author Duy-Nguyen Ta
 | 
						|
 */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <gtsam/base/numericalDerivative.h>
 | 
						|
#include <gtsam/geometry/Pose3.h>
 | 
						|
#include <gtsam/nonlinear/NonlinearFactor.h>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
/**
 | 
						|
 * Implement the Reconstruction equation: \f$ g_{k+1} = g_k \exp (h\xi_k) \f$, where
 | 
						|
 *      \f$ h \f$: timestep (parameter)
 | 
						|
 *      \f$ g_{k+1}, g_{k} \f$: poses at the current and the next timestep
 | 
						|
 *      \f$ \xi_k \f$: the body-fixed velocity (Lie algebra)
 | 
						|
 * It is somewhat similar to BetweenFactor, but treats the body-fixed velocity
 | 
						|
 * \f$ \xi_k \f$ as a variable. So it is a three-way factor.
 | 
						|
 * Note: this factor is necessary if one needs to smooth the entire graph. It's not needed
 | 
						|
 *  in sequential update method.
 | 
						|
 */
 | 
						|
class Reconstruction : public NoiseModelFactor3<Pose3, Pose3, Vector6>  {
 | 
						|
 | 
						|
  double h_;  // time step
 | 
						|
  typedef NoiseModelFactor3<Pose3, Pose3, Vector6> Base;
 | 
						|
public:
 | 
						|
  Reconstruction(Key gKey1, Key gKey, Key xiKey, double h, double mu = 1000.0) :
 | 
						|
    Base(noiseModel::Constrained::All(Pose3::Dim(), fabs(mu)), gKey1, gKey,
 | 
						|
        xiKey), h_(h) {
 | 
						|
  }
 | 
						|
  virtual ~Reconstruction() {}
 | 
						|
 | 
						|
  /// @return a deep copy of this factor
 | 
						|
  virtual gtsam::NonlinearFactor::shared_ptr clone() const {
 | 
						|
    return boost::static_pointer_cast<gtsam::NonlinearFactor>(
 | 
						|
        gtsam::NonlinearFactor::shared_ptr(new Reconstruction(*this))); }
 | 
						|
 | 
						|
  /** \f$ log((g_k\exp(h\xi_k))^{-1}g_{k+1}) = 0, with optional derivatives */
 | 
						|
  Vector evaluateError(const Pose3& gk1, const Pose3& gk, const Vector6& xik,
 | 
						|
      boost::optional<Matrix&> H1 = boost::none,
 | 
						|
      boost::optional<Matrix&> H2 = boost::none,
 | 
						|
      boost::optional<Matrix&> H3 = boost::none) const {
 | 
						|
 | 
						|
    Matrix D_gkxi_gk, D_gkxi_exphxi;
 | 
						|
    Pose3 gkxi = gk.compose(Pose3::Expmap(h_*xik), D_gkxi_gk, D_gkxi_exphxi);
 | 
						|
 | 
						|
    Matrix D_hx_gk1, D_hx_gkxi;
 | 
						|
    Pose3 hx = gkxi.between(gk1, D_hx_gkxi, D_hx_gk1);
 | 
						|
 | 
						|
    if (H1) {
 | 
						|
      *H1 = D_hx_gk1;
 | 
						|
    }
 | 
						|
    if (H2) {
 | 
						|
      Matrix D_hx_gk = D_hx_gkxi * D_gkxi_gk;
 | 
						|
      *H2 = D_hx_gk;
 | 
						|
    }
 | 
						|
 | 
						|
    if (H3) {
 | 
						|
      Matrix D_exphxi_xi = Pose3::dExpInv_exp(h_*xik)*h_;
 | 
						|
      Matrix D_hx_xi = D_hx_gkxi * D_gkxi_exphxi * D_exphxi_xi;
 | 
						|
      *H3 = D_hx_xi;
 | 
						|
    }
 | 
						|
 | 
						|
    return Pose3::Logmap(hx);
 | 
						|
  }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Implement the Discrete Euler-Poincare' equation:
 | 
						|
 */
 | 
						|
class DiscreteEulerPoincareHelicopter : public NoiseModelFactor3<Vector6, Vector6, Pose3>  {
 | 
						|
 | 
						|
  double h_;  /// time step
 | 
						|
  Matrix Inertia_;  /// Inertia tensors Inertia = [ J 0; 0 M ]
 | 
						|
  Vector Fu_;   /// F is the 6xc Control matrix, where c is the number of control variables uk, which directly change the vehicle pose (e.g., gas/brake/speed)
 | 
						|
  /// F(.) is actually a function of the shape variables, which do not change the pose, but affect the vehicle's shape, e.g. steering wheel.
 | 
						|
  /// Fu_ encodes everything we need to know about the vehicle's dynamics.
 | 
						|
  double m_;  /// mass. For gravity external force f_ext, which has a fixed formula in this case.
 | 
						|
 | 
						|
  // TODO: Fk_ and f_ext should be generalized as functions (factor nodes) on control signals and poses/velocities.
 | 
						|
  // This might be needed in control or system identification problems.
 | 
						|
  // We treat them as constant here, since the control inputs are to specify.
 | 
						|
 | 
						|
  typedef NoiseModelFactor3<Vector6, Vector6, Pose3> Base;
 | 
						|
 | 
						|
public:
 | 
						|
  DiscreteEulerPoincareHelicopter(Key xiKey1, Key xiKey_1, Key gKey,
 | 
						|
      double h, const Matrix& Inertia, const Vector& Fu, double m,
 | 
						|
      double mu = 1000.0) :
 | 
						|
        Base(noiseModel::Constrained::All(Pose3::Dim(), fabs(mu)), xiKey1, xiKey_1, gKey),
 | 
						|
        h_(h), Inertia_(Inertia), Fu_(Fu), m_(m) {
 | 
						|
  }
 | 
						|
  virtual ~DiscreteEulerPoincareHelicopter() {}
 | 
						|
 | 
						|
  /// @return a deep copy of this factor
 | 
						|
  virtual gtsam::NonlinearFactor::shared_ptr clone() const {
 | 
						|
    return boost::static_pointer_cast<gtsam::NonlinearFactor>(
 | 
						|
        gtsam::NonlinearFactor::shared_ptr(new DiscreteEulerPoincareHelicopter(*this))); }
 | 
						|
 | 
						|
  /** DEP, with optional derivatives
 | 
						|
   * pk - pk_1 - h_*Fu_ - h_*f_ext = 0
 | 
						|
   * where pk = CT_TLN(h*xi_k)*Inertia*xi_k
 | 
						|
   *       pk_1 = CT_TLN(-h*xi_k_1)*Inertia*xi_k_1
 | 
						|
   * */
 | 
						|
  Vector evaluateError(const Vector6& xik, const Vector6& xik_1, const Pose3& gk,
 | 
						|
      boost::optional<Matrix&> H1 = boost::none,
 | 
						|
      boost::optional<Matrix&> H2 = boost::none,
 | 
						|
      boost::optional<Matrix&> H3 = boost::none) const {
 | 
						|
 | 
						|
    Vector muk = Inertia_*xik;
 | 
						|
    Vector muk_1 = Inertia_*xik_1;
 | 
						|
 | 
						|
    // Apply the inverse right-trivialized tangent (derivative) map of the exponential map,
 | 
						|
    // using the trapezoidal Lie-Newmark (TLN) scheme, to a vector.
 | 
						|
    // TLN is just a first order approximation of the dExpInv_exp above, detailed in [Kobilarov09siggraph]
 | 
						|
    // C_TLN formula: I6 - 1/2 ad[xi].
 | 
						|
    Matrix D_adjThxik_muk, D_adjThxik1_muk1;
 | 
						|
    Vector pk = muk - 0.5*Pose3::adjointTranspose(h_*xik, muk, D_adjThxik_muk);
 | 
						|
    Vector pk_1 = muk_1 - 0.5*Pose3::adjointTranspose(-h_*xik_1, muk_1, D_adjThxik1_muk1);
 | 
						|
 | 
						|
    Matrix D_gravityBody_gk;
 | 
						|
    Point3 gravityBody = gk.rotation().unrotate(Point3(0.0, 0.0, -9.81*m_), D_gravityBody_gk, boost::none);
 | 
						|
    Vector f_ext = (Vector(6) << 0.0, 0.0, 0.0, gravityBody.x(), gravityBody.y(), gravityBody.z()).finished();
 | 
						|
 | 
						|
    Vector hx = pk - pk_1 - h_*Fu_ - h_*f_ext;
 | 
						|
 | 
						|
    if (H1) {
 | 
						|
      Matrix D_pik_xi = Inertia_-0.5*(h_*D_adjThxik_muk + Pose3::adjointMap(h_*xik).transpose()*Inertia_);
 | 
						|
      *H1 = D_pik_xi;
 | 
						|
    }
 | 
						|
 | 
						|
    if (H2) {
 | 
						|
      Matrix D_pik1_xik1 = Inertia_-0.5*(-h_*D_adjThxik1_muk1 + Pose3::adjointMap(-h_*xik_1).transpose()*Inertia_);
 | 
						|
      *H2 = -D_pik1_xik1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (H3) {
 | 
						|
      *H3 = zeros(6,6);
 | 
						|
      insertSub(*H3, -h_*D_gravityBody_gk, 3, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    return hx;
 | 
						|
  }
 | 
						|
 | 
						|
#if 0
 | 
						|
  Vector computeError(const Vector6& xik, const Vector6& xik_1, const Pose3& gk) const {
 | 
						|
    Vector pk = Pose3::dExpInv_exp(h_*xik).transpose()*Inertia_*xik;
 | 
						|
    Vector pk_1 = Pose3::dExpInv_exp(-h_*xik_1).transpose()*Inertia_*xik_1;
 | 
						|
 | 
						|
    Point3 gravityBody = gk.rotation().unrotate(Point3(0.0, 0.0, -9.81*m_));
 | 
						|
    Vector f_ext = (Vector(6) << 0.0, 0.0, 0.0, gravityBody.x(), gravityBody.y(), gravityBody.z());
 | 
						|
 | 
						|
    Vector hx = pk - pk_1 - h_*Fu_ - h_*f_ext;
 | 
						|
 | 
						|
    return hx;
 | 
						|
  }
 | 
						|
 | 
						|
  Vector evaluateError(const Vector6& xik, const Vector6& xik_1, const Pose3& gk,
 | 
						|
      boost::optional<Matrix&> H1 = boost::none,
 | 
						|
      boost::optional<Matrix&> H2 = boost::none,
 | 
						|
      boost::optional<Matrix&> H3 = boost::none) const {
 | 
						|
    if (H1) {
 | 
						|
      (*H1) = numericalDerivative31(
 | 
						|
          boost::function<Vector(const Vector6&, const Vector6&, const Pose3&)>(
 | 
						|
              boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
 | 
						|
          ),
 | 
						|
          xik, xik_1, gk, 1e-5
 | 
						|
      );
 | 
						|
    }
 | 
						|
    if (H2) {
 | 
						|
      (*H2) = numericalDerivative32(
 | 
						|
          boost::function<Vector(const Vector6&, const Vector6&, const Pose3&)>(
 | 
						|
              boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
 | 
						|
          ),
 | 
						|
          xik, xik_1, gk, 1e-5
 | 
						|
      );
 | 
						|
    }
 | 
						|
    if (H3) {
 | 
						|
      (*H3) = numericalDerivative33(
 | 
						|
          boost::function<Vector(const Vector6&, const Vector6&, const Pose3&)>(
 | 
						|
              boost::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3)
 | 
						|
          ),
 | 
						|
          xik, xik_1, gk, 1e-5
 | 
						|
      );
 | 
						|
    }
 | 
						|
 | 
						|
    return computeError(xik, xik_1, gk);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
} /* namespace gtsam */
 |