gtsam/cpp/testSQPOptimizer.cpp

367 lines
12 KiB
C++

/*
* @file testSQPOptimizer.cpp
* @brief tests the optimization algorithm for nonlinear graphs with nonlinear constraints
* @author Alex Cunningham
*/
#include <CppUnitLite/TestHarness.h>
#include <boost/assign/std/list.hpp> // for operator +=
#include <boost/assign/std/map.hpp> // for insert
#include <boost/bind.hpp>
#define GTSAM_MAGIC_KEY
#include <simulated2D.h>
#include "NonlinearFactorGraph.h"
#include "NonlinearConstraint.h"
#include "NonlinearEquality.h"
#include "VectorConfig.h"
#include "Ordering.h"
//#include "SQPOptimizer.h"
// implementations
#include "NonlinearConstraint-inl.h"
//#include "SQPOptimizer-inl.h"
using namespace std;
using namespace gtsam;
using namespace boost;
using namespace boost::assign;
using namespace simulated2D;
static SharedGaussian sigma(noiseModel::Isotropic::Sigma(1,0.1));
//// typedefs
//typedef simulated2D::Config Config2D;
//typedef boost::shared_ptr<Config2D> shared_config;
//typedef NonlinearFactorGraph<Config2D> NLGraph;
//typedef boost::shared_ptr<NonlinearFactor<Config2D> > shared;
//
//namespace map_warp_example {
//typedef NonlinearConstraint1<
// Config2D, simulated2D::PoseKey, Point2> NLC1;
//typedef NonlinearConstraint2<
// Config2D, simulated2D::PointKey, Point2, simulated2D::PointKey, Point2> NLC2;
//} // \namespace map_warp_example
//
///* ********************************************************************* */
//// Example that moves two separate maps into the same frame of reference
//// Note that this is a linear example, so it should converge in one step
///* ********************************************************************* */
//
//namespace sqp_LinearMapWarp2 {
//// binary constraint between landmarks
///** g(x) = x-y = 0 */
//Vector g_func(const Config2D& config, const PointKey& key1, const PointKey& key2) {
// Point2 p = config[key1]-config[key2];
// return Vector_(2, p.x(), p.y());
//}
//
///** jacobian at l1 */
//Matrix jac_g1(const Config2D& config) {
// return eye(2);
//}
//
///** jacobian at l2 */
//Matrix jac_g2(const Config2D& config) {
// return -1*eye(2);
//}
//} // \namespace sqp_LinearMapWarp2
//
//namespace sqp_LinearMapWarp1 {
//// Unary Constraint on x1
///** g(x) = x -[1;1] = 0 */
//Vector g_func(const Config2D& config, const PoseKey& key) {
// Point2 p = config[key]-Point2(1.0, 1.0);
// return Vector_(2, p.x(), p.y());
//}
//
///** jacobian at x1 */
//Matrix jac_g(const Config2D& config) {
// return eye(2);
//}
//} // \namespace sqp_LinearMapWarp12
//
////typedef NonlinearOptimizer<NLGraph, Config2D> Optimizer;
//
///**
// * Creates the graph with each robot seeing the landmark, and it is
// * known that it is the same landmark
// */
//NLGraph linearMapWarpGraph() {
// using namespace map_warp_example;
// // keys
// PoseKey x1(1), x2(2);
// PointKey l1(1), l2(2);
//
// // constant constraint on x1
// list<Symbol> keyx; keyx += "x1";
// LagrangeKey L1(1);
// shared_ptr<NLC1> c1(new NLC1(boost::bind(sqp_LinearMapWarp1::g_func, _1, x1),
// x1, boost::bind(sqp_LinearMapWarp1::jac_g, _1),
// 2, L1));
//
// // measurement from x1 to l1
// Point2 z1(0.0, 5.0);
// shared f1(new simulated2D::Measurement(z1, sigma, 1,1));
//
// // measurement from x2 to l2
// Point2 z2(-4.0, 0.0);
// shared f2(new simulated2D::Measurement(z2, sigma, 2,2));
//
// // equality constraint between l1 and l2
// LagrangeKey L12(12);
// list<Symbol> keys; keys += "l1", "l2";
// shared_ptr<NLC2> c2 (new NLC2(
// boost::bind(sqp_LinearMapWarp2::g_func, _1, l1, l2),
// l1, boost::bind(sqp_LinearMapWarp2::jac_g1, _1),
// l2, boost::bind(sqp_LinearMapWarp2::jac_g2, _1),
// 2, L12));
//
// // construct the graph
// NLGraph graph;
// graph.push_back(c1);
// graph.push_back(c2);
// graph.push_back(f1);
// graph.push_back(f2);
//
// return graph;
//}
///* ********************************************************************* */
//TEST ( SQPOptimizer, map_warp_initLam ) {
// bool verbose = false;
// // get a graph
// NLGraph graph = linearMapWarpGraph();
//
// // keys
// PoseKey x1(1), x2(2);
// PointKey l1(1), l2(2);
// LagrangeKey L1(1), L12(12);
//
// // create an initial estimate
// shared_config initialEstimate(new Config2D);
// initialEstimate->insert(x1, Point2(1.0, 1.0));
// initialEstimate->insert(l1, Point2(1.0, 6.0));
// initialEstimate->insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
// initialEstimate->insert(x2, Point2(0.0, 0.0)); // other pose starts at origin
// initialEstimate->insert(L12, Vector_(2, 1.0, 1.0));
// initialEstimate->insert(L1, Vector_(2, 1.0, 1.0));
//
// // create an ordering
// Ordering ordering;
// ordering += "x1", "x2", "l1", "l2", "L12", "L1";
//
// // create an optimizer
// Optimizer optimizer(graph, ordering, initialEstimate);
// if (verbose) optimizer.print("Initialized Optimizer");
//
// // perform an iteration of optimization
// Optimizer oneIteration = optimizer.iterate(Optimizer::SILENT);
//
// // get the config back out and verify
// Config2D actual = *(oneIteration.config());
// Config2D expected;
// expected.insert(x1, Point2(1.0, 1.0));
// expected.insert(l1, Point2(1.0, 6.0));
// expected.insert(l2, Point2(1.0, 6.0));
// expected.insert(x2, Point2(5.0, 6.0));
// CHECK(assert_equal(expected, actual));
//}
///* ********************************************************************* */
//TEST ( SQPOptimizer, map_warp ) {
// bool verbose = false;
// // get a graph
// NLGraph graph = linearMapWarpGraph();
// if (verbose) graph.print("Initial map warp graph");
//
// // keys
// PoseKey x1(1), x2(2);
// PointKey l1(1), l2(2);
//
// // create an initial estimate
// shared_config initialEstimate(new Config2D);
// initialEstimate->insert(x1, Point2(1.0, 1.0));
// initialEstimate->insert(l1, Point2(.0, 6.0));
// initialEstimate->insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
// initialEstimate->insert(x2, Point2(0.0, 0.0)); // other pose starts at origin
//
// // create an ordering
// Ordering ordering;
// ordering += "x1", "x2", "l1", "l2";
//
// // create an optimizer
// Optimizer optimizer(graph, ordering, initialEstimate);
//
// // perform an iteration of optimization
// Optimizer oneIteration = optimizer.iterate(Optimizer::SILENT);
//
// // get the config back out and verify
// Config2D actual = *(oneIteration.config());
// Config2D expected;
// expected.insert(x1, Point2(1.0, 1.0));
// expected.insert(l1, Point2(1.0, 6.0));
// expected.insert(l2, Point2(1.0, 6.0));
// expected.insert(x2, Point2(5.0, 6.0));
// CHECK(assert_equal(expected, actual));
//}
//
///* ********************************************************************* */
//// This is an obstacle avoidance demo, where there is a trajectory of
//// three points, where there is a circular obstacle in the middle. There
//// is a binary inequality constraint connecting the obstacle to the
//// states, which enforces a minimum distance.
///* ********************************************************************* */
//
//typedef NonlinearConstraint2<Config2D, PoseKey, Point2, PointKey, Point2> AvoidConstraint;
//typedef shared_ptr<AvoidConstraint> shared_a;
//typedef NonlinearEquality<Config2D, simulated2D::PoseKey, Point2> PoseConstraint;
//typedef shared_ptr<PoseConstraint> shared_pc;
//typedef NonlinearEquality<Config2D, simulated2D::PointKey, Point2> ObstacleConstraint;
//typedef shared_ptr<ObstacleConstraint> shared_oc;
//
//
//namespace sqp_avoid1 {
//// avoidance radius
//double radius = 1.0;
//
//// binary avoidance constraint
///** g(x) = ||x2-obs||^2 - radius^2 > 0 */
//Vector g_func(const Config2D& config, const PoseKey& x, const PointKey& obs) {
// double dist2 = config[x].dist(config[obs]);
// double thresh = radius*radius;
// return Vector_(1, dist2-thresh);
//}
//
///** jacobian at pose */
//Matrix jac_g1(const Config2D& config, const PoseKey& x, const PointKey& obs) {
// Point2 p = config[x]-config[obs];
// return Matrix_(1,2, 2.0*p.x(), 2.0*p.y());
//}
//
///** jacobian at obstacle */
//Matrix jac_g2(const Config2D& config, const PoseKey& x, const PointKey& obs) {
// Point2 p = config[x]-config[obs];
// return Matrix_(1,2, -2.0*p.x(), -2.0*p.y());
//}
//}
//
//pair<NLGraph, Config2D> obstacleAvoidGraph() {
// // Keys
// PoseKey x1(1), x2(2), x3(3);
// PointKey l1(1);
// LagrangeKey L20(20);
//
// // Constrained Points
// Point2 pt_x1,
// pt_x3(10.0, 0.0),
// pt_l1(5.0, -0.5);
//
// shared_pc e1(new PoseConstraint(x1, pt_x1));
// shared_pc e2(new PoseConstraint(x3, pt_x3));
// shared_oc e3(new ObstacleConstraint(l1, pt_l1));
//
// // measurement from x1 to x2
// Point2 x1x2(5.0, 0.0);
// shared f1(new simulated2D::Odometry(x1x2, sigma, 1,2));
//
// // measurement from x2 to x3
// Point2 x2x3(5.0, 0.0);
// shared f2(new simulated2D::Odometry(x2x3, sigma, 2,3));
//
// // create a binary inequality constraint that forces the middle point away from
// // the obstacle
// shared_a c1(new AvoidConstraint(boost::bind(sqp_avoid1::g_func, _1, x2, l1),
// x2, boost::bind(sqp_avoid1::jac_g1, _1, x2, l1),
// l1,boost::bind(sqp_avoid1::jac_g2, _1, x2, l1),
// 1, L20, false));
//
// // construct the graph
// NLGraph graph;
// graph.push_back(e1);
// graph.push_back(e2);
// graph.push_back(e3);
// graph.push_back(c1);
// graph.push_back(f1);
// graph.push_back(f2);
//
// // make a config of the fixed values, for convenience
// Config2D config;
// config.insert(x1, pt_x1);
// config.insert(x3, pt_x3);
// config.insert(l1, pt_l1);
//
// return make_pair(graph, config);
//}
//
///* ********************************************************************* */
//TEST ( SQPOptimizer, inequality_avoid ) {
// // create the graph
// NLGraph graph; Config2D feasible;
// boost::tie(graph, feasible) = obstacleAvoidGraph();
//
// // create the rest of the config
// shared_ptr<Config2D> init(new Config2D(feasible));
// PoseKey x2(2);
// init->insert(x2, Point2(5.0, 100.0));
//
// // create an ordering
// Ordering ord;
// ord += "x1", "x2", "x3", "l1";
//
// // create an optimizer
// Optimizer optimizer(graph, ord, init);
//
// // perform an iteration of optimization
// // NOTE: the constraint will be inactive in the first iteration,
// // so it will violate the constraint after one iteration
// Optimizer afterOneIteration = optimizer.iterate(Optimizer::SILENT);
//
// Config2D exp1(feasible);
// exp1.insert(x2, Point2(5.0, 0.0));
// CHECK(assert_equal(exp1, *(afterOneIteration.config())));
//
// // the second iteration will activate the constraint and force the
// // config to a viable configuration.
// Optimizer after2ndIteration = afterOneIteration.iterate(Optimizer::SILENT);
//
// Config2D exp2(feasible);
// exp2.insert(x2, Point2(5.0, 0.5));
// CHECK(assert_equal(exp2, *(after2ndIteration.config())));
//}
//
///* ********************************************************************* */
//TEST ( SQPOptimizer, inequality_avoid_iterative ) {
// // create the graph
// NLGraph graph; Config2D feasible;
// boost::tie(graph, feasible) = obstacleAvoidGraph();
//
// // create the rest of the config
// shared_ptr<Config2D> init(new Config2D(feasible));
// PoseKey x2(2);
// init->insert(x2, Point2(5.0, 100.0));
//
// // create an ordering
// Ordering ord;
// ord += "x1", "x2", "x3", "l1";
//
// // create an optimizer
// Optimizer optimizer(graph, ord, init);
//
// double relThresh = 1e-5; // minimum change in error between iterations
// double absThresh = 1e-5; // minimum error necessary to converge
// double constraintThresh = 1e-9; // minimum constraint error to be feasible
// Optimizer final = optimizer.iterateSolve(relThresh, absThresh, constraintThresh);
//
// // verify
// Config2D exp2(feasible);
// exp2.insert(x2, Point2(5.0, 0.5));
// CHECK(assert_equal(exp2, *(final.config())));
//}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */