gtsam/cpp/testSQP.cpp

895 lines
28 KiB
C++

/*
* @file testSQP.cpp
* @brief demos of SQP using existing gtsam components
* @author Alex Cunningham
*/
#include <iostream>
#include <cmath>
#include <boost/assign/std/list.hpp> // for operator +=
#include <boost/assign/std/map.hpp> // for insert
#include <boost/foreach.hpp>
#include <boost/shared_ptr.hpp>
#include <CppUnitLite/TestHarness.h>
// TODO: DANGEROUS, create shared pointers
#define GTSAM_DANGEROUS_GAUSSIAN 2
#define GTSAM_MAGIC_KEY
#include <Pose3.h>
#include <GaussianFactorGraph.h>
#include <NonlinearOptimizer.h>
#include <SQPOptimizer.h>
#include <simulated2D.h>
#include <Ordering.h>
#include <visualSLAM.h>
// templated implementations
#include <NonlinearFactorGraph-inl.h>
#include <NonlinearConstraint-inl.h>
#include <NonlinearOptimizer-inl.h>
#include <SQPOptimizer-inl.h>
using namespace std;
using namespace gtsam;
using namespace boost;
using namespace boost::assign;
// Models to use
SharedDiagonal probModel1 = sharedSigma(1,1.0);
SharedDiagonal probModel2 = sharedSigma(2,1.0);
SharedDiagonal constraintModel1 = noiseModel::Constrained::All(1);
// trick from some reading group
#define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
///* *********************************************************************
// * This example uses a nonlinear objective function and
// * nonlinear equality constraint. The formulation is actually
// * the Cholesky form that creates the full Hessian explicitly,
// * which should really be avoided with our QR-based machinery.
// *
// * Note: the update equation used here has a fixed step size
// * and gain that is rather arbitrarily chosen, and as such,
// * will take a silly number of iterations.
// */
//TEST (SQP, problem1_cholesky ) {
// bool verbose = false;
// // use a nonlinear function of f(x) = x^2+y^2
// // nonlinear equality constraint: g(x) = x^2-5-y=0
// // Lagrangian: f(x) + \lambda*g(x)
//
// // state structure: [x y \lambda]
// VectorConfig init, state;
// init.insert("x", Vector_(1, 1.0));
// init.insert("y", Vector_(1, 1.0));
// init.insert("L", Vector_(1, 1.0));
// state = init;
//
// if (verbose) init.print("Initial State");
//
// // loop until convergence
// int maxIt = 10;
// for (int i = 0; i<maxIt; ++i) {
// if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
//
// // extract the states
// double x, y, lambda;
// x = state["x"](0);
// y = state["y"](0);
// lambda = state["L"](0);
//
// // calculate the components
// Matrix H1, H2, gradG;
// Vector gradL, gx;
//
// // hessian of lagrangian function, in two columns:
// H1 = Matrix_(2,1,
// 2.0+2.0*lambda,
// 0.0);
// H2 = Matrix_(2,1,
// 0.0,
// 2.0);
//
// // deriviative of lagrangian function
// gradL = Vector_(2,
// 2.0*x*(1+lambda),
// 2.0*y-lambda);
//
// // constraint derivatives
// gradG = Matrix_(2,1,
// 2.0*x,
// 0.0);
//
// // constraint value
// gx = Vector_(1,
// x*x-5-y);
//
// // create a factor for the states
// GaussianFactor::shared_ptr f1(new
// GaussianFactor("x", H1, "y", H2, "L", gradG, gradL, probModel2));
//
// // create a factor for the lagrange multiplier
// GaussianFactor::shared_ptr f2(new
// GaussianFactor("x", -sub(gradG, 0, 1, 0, 1),
// "y", -sub(gradG, 1, 2, 0, 1), -gx, constraintModel1));
//
// // construct graph
// GaussianFactorGraph fg;
// fg.push_back(f1);
// fg.push_back(f2);
// if (verbose) fg.print("Graph");
//
// // solve
// Ordering ord;
// ord += "x", "y", "L";
// VectorConfig delta = fg.optimize(ord).scale(-1.0);
// if (verbose) delta.print("Delta");
//
// // update initial estimate
// VectorConfig newState = expmap(state, delta);
// state = newState;
//
// if (verbose) state.print("Updated State");
// }
//
// // verify that it converges to the nearest optimal point
// VectorConfig expected;
// expected.insert("L", Vector_(1, -1.0));
// expected.insert("x", Vector_(1, 2.12));
// expected.insert("y", Vector_(1, -0.5));
// CHECK(assert_equal(expected,state, 1e-2));
//}
//
///* *********************************************************************
// * This example uses a nonlinear objective function and
// * nonlinear equality constraint. This formulation splits
// * the constraint into a factor and a linear constraint.
// *
// * This example uses the same silly number of iterations as the
// * previous example.
// */
//TEST (SQP, problem1_sqp ) {
// bool verbose = false;
// // use a nonlinear function of f(x) = x^2+y^2
// // nonlinear equality constraint: g(x) = x^2-5-y=0
// // Lagrangian: f(x) + \lambda*g(x)
//
// // state structure: [x y \lambda]
// VectorConfig init, state;
// init.insert("x", Vector_(1, 1.0));
// init.insert("y", Vector_(1, 1.0));
// init.insert("L", Vector_(1, 1.0));
// state = init;
//
// if (verbose) init.print("Initial State");
//
// // loop until convergence
// int maxIt = 5;
// for (int i = 0; i<maxIt; ++i) {
// if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
//
// // extract the states
// double x, y, lambda;
// x = state["x"](0);
// y = state["y"](0);
// lambda = state["L"](0);
//
// /** create the linear factor
// * ||h(x)-z||^2 => ||Ax-b||^2
// * where:
// * h(x) simply returns the inputs
// * z zeros(2)
// * A identity
// * b linearization point
// */
// Matrix A = eye(2);
// Vector b = Vector_(2, x, y);
// GaussianFactor::shared_ptr f1(
// new GaussianFactor("x", sub(A, 0,2, 0,1), // A(:,1)
// "y", sub(A, 0,2, 1,2), // A(:,2)
// b, // rhs of f(x)
// probModel2)); // arbitrary sigma
//
// /** create the constraint-linear factor
// * Provides a mechanism to use variable gain to force the constraint
// * \lambda*gradG*dx + d\lambda = zero
// * formulated in matrix form as:
// * [\lambda*gradG eye(1)] [dx; d\lambda] = zero
// */
// Matrix gradG = Matrix_(1, 2,2*x, -1.0);
// GaussianFactor::shared_ptr f2(
// new GaussianFactor("x", lambda*sub(gradG, 0,1, 0,1), // scaled gradG(:,1)
// "y", lambda*sub(gradG, 0,1, 1,2), // scaled gradG(:,2)
// "L", eye(1), // dlambda term
// Vector_(1, 0.0), // rhs is zero
// probModel1)); // arbitrary sigma
//
// // create the actual constraint
// // [gradG] [x; y] - g = 0
// Vector g = Vector_(1,x*x-y-5);
// GaussianFactor::shared_ptr c1(
// new GaussianFactor("x", sub(gradG, 0,1, 0,1), // slice first part of gradG
// "y", sub(gradG, 0,1, 1,2), // slice second part of gradG
// g, // value of constraint function
// constraintModel1)); // force to constraint
//
// // construct graph
// GaussianFactorGraph fg;
// fg.push_back(f1);
// fg.push_back(f2);
// fg.push_back(c1);
// if (verbose) fg.print("Graph");
//
// // solve
// Ordering ord;
// ord += "x", "y", "L";
// VectorConfig delta = fg.optimize(ord);
// if (verbose) delta.print("Delta");
//
// // update initial estimate
// VectorConfig newState = expmap(state, delta.scale(-1.0));
//
// // set the state to the updated state
// state = newState;
//
// if (verbose) state.print("Updated State");
// }
//
// // verify that it converges to the nearest optimal point
// VectorConfig expected;
// expected.insert("x", Vector_(1, 2.12));
// expected.insert("y", Vector_(1, -0.5));
// CHECK(assert_equal(state["x"], expected["x"], 1e-2));
// CHECK(assert_equal(state["y"], expected["y"], 1e-2));
//}
//
///* ********************************************************************* */
//
//typedef simulated2D::Config Config2D;
//typedef NonlinearFactorGraph<Config2D> NLGraph;
//typedef NonlinearEquality<Config2D, simulated2D::PoseKey, Point2> NLE;
//typedef boost::shared_ptr<simulated2D::Measurement > shared;
//typedef NonlinearOptimizer<NLGraph, Config2D> Optimizer;
//
//typedef TypedSymbol<Vector, 'L'> LamKey;
//
///*
// * Determining a ground truth linear system
// * with two poses seeing one landmark, with each pose
// * constrained to a particular value
// */
//TEST (SQP, two_pose_truth ) {
// bool verbose = false;
//
// // create a graph
// shared_ptr<NLGraph> graph(new NLGraph);
//
// // add the constraints on the ends
// // position (1, 1) constraint for x1
// // position (5, 6) constraint for x2
// simulated2D::PoseKey x1(1), x2(2);
// simulated2D::PointKey l1(1);
// Point2 pt_x1(1.0, 1.0),
// pt_x2(5.0, 6.0);
// shared_ptr<NLE> ef1(new NLE(x1, pt_x1)),
// ef2(new NLE(x2, pt_x2));
// graph->push_back(ef1);
// graph->push_back(ef2);
//
// // measurement from x1 to l1
// Point2 z1(0.0, 5.0);
// SharedGaussian sigma(noiseModel::Isotropic::Sigma(2, 0.1));
// shared f1(new simulated2D::Measurement(z1, sigma, x1,l1));
// graph->push_back(f1);
//
// // measurement from x2 to l1
// Point2 z2(-4.0, 0.0);
// shared f2(new simulated2D::Measurement(z2, sigma, x2,l1));
// graph->push_back(f2);
//
// // create an initial estimate
// Point2 pt_l1(
// 1.0, 6.0 // ground truth
// //1.2, 5.6 // small error
// );
// shared_ptr<Config2D> initialEstimate(new Config2D);
// initialEstimate->insert(l1, pt_l1);
// initialEstimate->insert(x1, pt_x1);
// initialEstimate->insert(x2, pt_x2);
//
// // optimize the graph
// shared_ptr<Ordering> ordering(new Ordering());
// *ordering += "x1", "x2", "l1";
// Optimizer::shared_solver solver(new Optimizer::solver(ordering));
// Optimizer optimizer(graph, initialEstimate, solver);
//
// // display solution
// double relativeThreshold = 1e-5;
// double absoluteThreshold = 1e-5;
// Optimizer act_opt = optimizer.gaussNewton(relativeThreshold, absoluteThreshold);
// boost::shared_ptr<const Config2D> actual = act_opt.config();
// if (verbose) actual->print("Configuration after optimization");
//
// // verify
// Config2D expected;
// expected.insert(x1, pt_x1);
// expected.insert(x2, pt_x2);
// expected.insert(l1, Point2(1.0, 6.0));
// CHECK(assert_equal(expected, *actual, 1e-5));
//}
//
///* ********************************************************************* */
//namespace sqp_test1 {
//
// // binary constraint between landmarks
// /** g(x) = x-y = 0 */
// Vector g(const Config2D& config, const list<Symbol>& keys) {
// Point2 pt1, pt2;
// pt1 = config[simulated2D::PointKey(keys.front().index())];
// pt2 = config[simulated2D::PointKey(keys.back().index())];
// return Vector_(2, pt1.x() - pt2.x(), pt1.y() - pt2.y());
// }
//
// /** jacobian at l1 */
// Matrix G1(const Config2D& config, const list<Symbol>& keys) {
// return eye(2);
// }
//
// /** jacobian at l2 */
// Matrix G2(const Config2D& config, const list<Symbol>& keys) {
// return -1 * eye(2);
// }
//
//} // \namespace sqp_test1
//
////namespace sqp_test2 {
////
//// // Unary Constraint on x1
//// /** g(x) = x -[1;1] = 0 */
//// Vector g(const Config2D& config, const list<Symbol>& keys) {
//// return config[keys.front()] - Vector_(2, 1.0, 1.0);
//// }
////
//// /** jacobian at x1 */
//// Matrix G(const Config2D& config, const list<Symbol>& keys) {
//// return eye(2);
//// }
////
////} // \namespace sqp_test2
//
//
//typedef NonlinearConstraint2<
// Config2D, simulated2D::PointKey, Point2, simulated2D::PointKey, Point2> NLC2;
//
///* *********************************************************************
// * Version that actually uses nonlinear equality constraints
// * to to perform optimization. Same as above, but no
// * equality constraint on x2, and two landmarks that
// * should be the same. Note that this is a linear system,
// * so it will converge in one step.
// */
//TEST (SQP, two_pose ) {
// bool verbose = false;
//
// // create the graph
// shared_ptr<NLGraph> graph(new NLGraph);
//
// // add the constraints on the ends
// // position (1, 1) constraint for x1
// // position (5, 6) constraint for x2
// simulated2D::PoseKey x1(1), x2(2);
// simulated2D::PointKey l1(1), l2(2);
// Point2 pt_x1(1.0, 1.0),
// pt_x2(5.0, 6.0);
// shared_ptr<NLE> ef1(new NLE(x1, pt_x1));
// graph->push_back(ef1);
//
// // measurement from x1 to l1
// Point2 z1(0.0, 5.0);
// SharedGaussian sigma(noiseModel::Isotropic::Sigma(2, 0.1));
// shared f1(new simulated2D::Measurement(z1, sigma, x1,l1));
// graph->push_back(f1);
//
// // measurement from x2 to l2
// Point2 z2(-4.0, 0.0);
// shared f2(new simulated2D::Measurement(z2, sigma, x2,l2));
// graph->push_back(f2);
//
// // equality constraint between l1 and l2
// list<Symbol> keys2; keys2 += "l1", "l2";
// boost::shared_ptr<NLC2 > c2(new NLC2(
// boost::bind(sqp_test1::g, _1, keys2),
// l1, boost::bind(sqp_test1::G1, _1, keys2),
// l2, boost::bind(sqp_test1::G2, _1, keys2),
// 2, "L1"));
// graph->push_back(c2);
//
// // create an initial estimate
// shared_ptr<Config2D> initialEstimate(new Config2D);
// initialEstimate->insert(x1, pt_x1);
// initialEstimate->insert(x2, Point2());
// initialEstimate->insert(l1, Point2(1.0, 6.0)); // ground truth
// initialEstimate->insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
//
// // create an initial estimate for the lagrange multiplier
// shared_ptr<VectorConfig> initLagrange(new VectorConfig);
// initLagrange->insert(LamKey(1), Vector_(2, 1.0, 1.0)); // connect the landmarks
//
// // create state config variables and initialize them
// Config2D state(*initialEstimate);
// VectorConfig state_lambda(*initLagrange);
//
// // optimization loop
// int maxIt = 1;
// for (int i = 0; i<maxIt; ++i) {
//
// // linearize the graph
// GaussianFactorGraph fg;
// typedef FactorGraph<NonlinearFactor<Config2D> >::const_iterator const_iterator;
// // iterate over all factors
// for (const_iterator factor = graph->begin(); factor < graph->end(); factor++) {
// const shared_ptr<NLC2> constraint = boost::shared_dynamic_cast<NLC2>(*factor);
// if (constraint == NULL) {
// // if a regular factor, linearize using the default linearization
// GaussianFactor::shared_ptr f = (*factor)->linearize(state);
// fg.push_back(f);
// } else {
// // if a constraint, linearize using the constraint method (2 configs)
// GaussianFactor::shared_ptr f, c;
// boost::tie(f,c) = constraint->linearize(state, state_lambda);
// fg.push_back(f);
// fg.push_back(c);
// }
// }
//
// if (verbose) fg.print("Linearized graph");
//
// // create an ordering
// Ordering ordering;
// ordering += "x1", "x2", "l1", "l2", "L1";
//
// // optimize linear graph to get full delta config
// VectorConfig delta = fg.optimize(ordering);
// if (verbose) delta.print("Delta Config");
//
// // update both state variables
// state = expmap(state, delta);
// if (verbose) state.print("newState");
// state_lambda = expmap(state_lambda, delta);
// if (verbose) state_lambda.print("newStateLam");
// }
//
// // verify
// Config2D expected;
// expected.insert(x1, pt_x1);
// expected.insert(l1, Point2(1.0, 6.0));
// expected.insert(l2, Point2(1.0, 6.0));
// expected.insert(x2, Point2(5.0, 6.0));
// CHECK(assert_equal(expected, state, 1e-5));
//}
//
///* ********************************************************************* */
//// VSLAM Examples
///* ********************************************************************* */
//// make a realistic calibration matrix
//double fov = 60; // degrees
//size_t w=640,h=480;
//Cal3_S2 K(fov,w,h);
//boost::shared_ptr<Cal3_S2> shK(new Cal3_S2(K));
//
//using namespace gtsam::visualSLAM;
//using namespace boost;
//
//// typedefs for visual SLAM example
//typedef visualSLAM::Config VConfig;
//typedef visualSLAM::Graph VGraph;
//typedef boost::shared_ptr<ProjectionFactor> shared_vf;
//typedef NonlinearOptimizer<VGraph,VConfig> VOptimizer;
//typedef SQPOptimizer<VGraph, VConfig> VSOptimizer;
//typedef NonlinearConstraint2<
// VConfig, visualSLAM::PointKey, Pose3, visualSLAM::PointKey, Pose3> VNLC2;
//
//
///**
// * Ground truth for a visual SLAM example with stereo vision
// */
//TEST (SQP, stereo_truth ) {
// bool verbose = false;
//
// // create initial estimates
// Rot3 faceDownY(Matrix_(3,3,
// 1.0, 0.0, 0.0,
// 0.0, 0.0, 1.0,
// 0.0, 1.0, 0.0));
// Pose3 pose1(faceDownY, Point3()); // origin, left camera
// SimpleCamera camera1(K, pose1);
// Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
// SimpleCamera camera2(K, pose2);
// Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
// Point3 landmarkNoisy(1.0, 6.0, 0.0);
//
// // create truth config
// boost::shared_ptr<VConfig> truthConfig(new Config);
// truthConfig->insert(1, camera1.pose());
// truthConfig->insert(2, camera2.pose());
// truthConfig->insert(1, landmark);
//
// // create graph
// shared_ptr<VGraph> graph(new VGraph());
//
// // create equality constraints for poses
// graph->push_back(shared_ptr<PoseConstraint>(new PoseConstraint(1, camera1.pose())));
// graph->push_back(shared_ptr<PoseConstraint>(new PoseConstraint(2, camera2.pose())));
//
// // create VSLAM factors
// Point2 z1 = camera1.project(landmark);
// if (verbose) z1.print("z1");
// shared_vf vf1(new ProjectionFactor(z1, 1.0, 1, 1, shK));
// graph->push_back(vf1);
// Point2 z2 = camera2.project(landmark);
// if (verbose) z2.print("z2");
// shared_vf vf2(new ProjectionFactor(z2, 1.0, 2, 1, shK));
// graph->push_back(vf2);
//
// if (verbose) graph->print("Graph after construction");
//
// // create ordering
// shared_ptr<Ordering> ord(new Ordering());
// *ord += "x1", "x2", "l1";
//
// // create optimizer
// VOptimizer::shared_solver solver(new VOptimizer::solver(ord));
// VOptimizer optimizer(graph, truthConfig, solver);
//
// // optimize
// VOptimizer afterOneIteration = optimizer.iterate();
//
// // verify
// DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9);
//
// // check if correct
// if (verbose) afterOneIteration.config()->print("After iteration");
// CHECK(assert_equal(*truthConfig,*(afterOneIteration.config())));
//}
//
//
///* *********************************************************************
// * Ground truth for a visual SLAM example with stereo vision
// * with some noise injected into the initial config
// */
//TEST (SQP, stereo_truth_noisy ) {
// bool verbose = false;
//
// // setting to determine how far away the noisy landmark is,
// // given that the ground truth is 5m in front of the cameras
// double noisyDist = 7.6;
//
// // create initial estimates
// Rot3 faceDownY(Matrix_(3,3,
// 1.0, 0.0, 0.0,
// 0.0, 0.0, 1.0,
// 0.0, 1.0, 0.0));
// Pose3 pose1(faceDownY, Point3()); // origin, left camera
// SimpleCamera camera1(K, pose1);
// Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
// SimpleCamera camera2(K, pose2);
// Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
// Point3 landmarkNoisy(1.0, noisyDist, 0.0); // initial point is too far out
//
// // create truth config
// boost::shared_ptr<Config> truthConfig(new Config);
// truthConfig->insert(1, camera1.pose());
// truthConfig->insert(2, camera2.pose());
// truthConfig->insert(1, landmark);
//
// // create config
// boost::shared_ptr<Config> noisyConfig(new Config);
// noisyConfig->insert(1, camera1.pose());
// noisyConfig->insert(2, camera2.pose());
// noisyConfig->insert(1, landmarkNoisy);
//
// // create graph
// shared_ptr<Graph> graph(new Graph());
//
// // create equality constraints for poses
// graph->push_back(shared_ptr<PoseConstraint>(new PoseConstraint(1, camera1.pose())));
// graph->push_back(shared_ptr<PoseConstraint>(new PoseConstraint(2, camera2.pose())));
//
// // create VSLAM factors
// Point2 z1 = camera1.project(landmark);
// if (verbose) z1.print("z1");
// shared_vf vf1(new ProjectionFactor(z1, 1.0, 1, 1, shK));
// graph->push_back(vf1);
// Point2 z2 = camera2.project(landmark);
// if (verbose) z2.print("z2");
// shared_vf vf2(new ProjectionFactor(z2, 1.0, 2, 1, shK));
// graph->push_back(vf2);
//
// if (verbose) {
// graph->print("Graph after construction");
// noisyConfig->print("Initial config");
// }
//
// // create ordering
// shared_ptr<Ordering> ord(new Ordering());
// *ord += "x1", "x2", "l1";
//
// // create optimizer
// VOptimizer::shared_solver solver(new VOptimizer::solver(ord));
// VOptimizer optimizer0(graph, noisyConfig, solver);
//
// if (verbose)
// cout << "Initial Error: " << optimizer0.error() << endl;
//
// // use Levenberg-Marquardt optimization
// double relThresh = 1e-5, absThresh = 1e-5;
// VOptimizer optimizer(optimizer0.levenbergMarquardt(relThresh, absThresh, VOptimizer::SILENT));
//
// // verify
// DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9);
//
// // check if correct
// if (verbose) {
// optimizer.config()->print("After iteration");
// cout << "Final error: " << optimizer.error() << endl;
// }
// CHECK(assert_equal(*truthConfig,*(optimizer.config())));
//}
//
///* ********************************************************************* */
//namespace sqp_stereo {
//
// // binary constraint between landmarks
// /** g(x) = x-y = 0 */
// Vector g(const Config& config, const list<Symbol>& keys) {
// return config[PointKey(keys.front().index())].vector()
// - config[PointKey(keys.back().index())].vector();
// }
//
// /** jacobian at l1 */
// Matrix G1(const Config& config, const list<Symbol>& keys) {
// return eye(3);
// }
//
// /** jacobian at l2 */
// Matrix G2(const Config& config, const list<Symbol>& keys) {
// return -1.0 * eye(3);
// }
//
//} // \namespace sqp_stereo
//
///* ********************************************************************* */
//VGraph stereoExampleGraph() {
// // create initial estimates
// Rot3 faceDownY(Matrix_(3,3,
// 1.0, 0.0, 0.0,
// 0.0, 0.0, 1.0,
// 0.0, 1.0, 0.0));
// Pose3 pose1(faceDownY, Point3()); // origin, left camera
// SimpleCamera camera1(K, pose1);
// Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
// SimpleCamera camera2(K, pose2);
// Point3 landmark1(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
// Point3 landmark2(1.0, 5.0, 0.0);
//
// // create graph
// VGraph graph;
//
// // create equality constraints for poses
// graph.push_back(shared_ptr<PoseConstraint>(new PoseConstraint(1, camera1.pose())));
// graph.push_back(shared_ptr<PoseConstraint>(new PoseConstraint(2, camera2.pose())));
//
// // create factors
// Point2 z1 = camera1.project(landmark1);
// shared_vf vf1(new ProjectionFactor(z1, 1.0, 1, 1, shK));
// graph.push_back(vf1);
// Point2 z2 = camera2.project(landmark2);
// shared_vf vf2(new ProjectionFactor(z2, 1.0, 2, 2, shK));
// graph.push_back(vf2);
//
// // create the binary equality constraint between the landmarks
// // NOTE: this is really just a linear constraint that is exactly the same
// // as the previous examples
// list<Symbol> keys; keys += "l1", "l2";
// visualSLAM::PointKey l1(1), l2(2);
// shared_ptr<VNLC2> c2(
// new VNLC2(boost::bind(sqp_stereo::g, _1, keys),
// l1, boost::bind(sqp_stereo::G1, _1, keys),
// l2, boost::bind(sqp_stereo::G2, _1, keys),
// 3, "L12"));
// graph.push_back(c2);
//
// return graph;
//}
//
///* ********************************************************************* */
//boost::shared_ptr<VConfig> stereoExampleTruthConfig() {
// // create initial estimates
// Rot3 faceDownY(Matrix_(3,3,
// 1.0, 0.0, 0.0,
// 0.0, 0.0, 1.0,
// 0.0, 1.0, 0.0));
// Pose3 pose1(faceDownY, Point3()); // origin, left camera
// SimpleCamera camera1(K, pose1);
// Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
// SimpleCamera camera2(K, pose2);
// Point3 landmark1(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
// Point3 landmark2(1.0, 5.0, 0.0);
//
// // create config
// boost::shared_ptr<Config> truthConfig(new Config);
// truthConfig->insert(1, camera1.pose());
// truthConfig->insert(2, camera2.pose());
// truthConfig->insert(1, landmark1);
// truthConfig->insert(2, landmark2); // create two landmarks in same place
//
// return truthConfig;
//}
//
///* *********************************************************************
// * SQP version of the above stereo example,
// * with the initial case as the ground truth
// */
//TEST (SQP, stereo_sqp ) {
// bool verbose = false;
//
// // get a graph
// VGraph graph = stereoExampleGraph();
// if (verbose) graph.print("Graph after construction");
//
// // get the truth config
// boost::shared_ptr<VConfig> truthConfig = stereoExampleTruthConfig();
//
// // create ordering
// Ordering ord;
// ord += "x1", "x2", "l1", "l2";
//
// // create optimizer
// VSOptimizer optimizer(graph, ord, truthConfig);
//
// // optimize
// VSOptimizer afterOneIteration = optimizer.iterate();
//
// // check if correct
// CHECK(assert_equal(*truthConfig,*(afterOneIteration.config())));
//}
//
///* *********************************************************************
// * SQP version of the above stereo example,
// * with noise in the initial estimate
// */
//TEST (SQP, stereo_sqp_noisy ) {
// bool verbose = false;
//
// // get a graph
// Graph graph = stereoExampleGraph();
//
// // create initial data
// Rot3 faceDownY(Matrix_(3,3,
// 1.0, 0.0, 0.0,
// 0.0, 0.0, 1.0,
// 0.0, 1.0, 0.0));
// Pose3 pose1(faceDownY, Point3()); // origin, left camera
// Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
// Point3 landmark1(0.5, 5.0, 0.0); //centered between the cameras, 5 units away
// Point3 landmark2(1.5, 5.0, 0.0);
//
// // noisy config
// boost::shared_ptr<Config> initConfig(new Config);
// initConfig->insert(1, pose1);
// initConfig->insert(2, pose2);
// initConfig->insert(1, landmark1);
// initConfig->insert(2, landmark2); // create two landmarks in same place
//
// // create ordering
// Ordering ord;
// ord += "x1", "x2", "l1", "l2";
//
// // create optimizer
// VSOptimizer optimizer(graph, ord, initConfig);
//
// // optimize
// double start_error = optimizer.error();
// int maxIt = 2;
// for (int i=0; i<maxIt; ++i) {
// if (verbose) cout << "\n ************************** \n"
// << " Iteration: " << i << endl;
// //if (verbose) optimizer.graph()->print();
// if (verbose) optimizer.config()->print();
// if (verbose)
// optimizer = optimizer.iterate(VSOptimizer::FULL);
// else
// optimizer = optimizer.iterate(VSOptimizer::SILENT);
// }
//
// if (verbose) cout << "Initial Error: " << start_error << "\n"
// << "Final Error: " << optimizer.error() << endl;
//
// // get the truth config
// boost::shared_ptr<Config> truthConfig = stereoExampleTruthConfig();
//
// if (verbose) {
// initConfig->print("Initial Config");
// truthConfig->print("Truth Config");
// optimizer.config()->print("After optimization");
// }
//
// // check if correct
// CHECK(assert_equal(*truthConfig,*(optimizer.config())));
//}
//
///* *********************************************************************
// * SQP version of the above stereo example,
// * with noise in the initial estimate and manually specified
// * lagrange multipliers
// */
//TEST (SQP, stereo_sqp_noisy_manualLagrange ) {
// bool verbose = false;
//
// // get a graph
// Graph graph = stereoExampleGraph();
//
// // create initial data
// Rot3 faceDownY(Matrix_(3,3,
// 1.0, 0.0, 0.0,
// 0.0, 0.0, 1.0,
// 0.0, 1.0, 0.0));
// Pose3 pose1(faceDownY, Point3()); // origin, left camera
// Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
// Point3 landmark1(0.5, 5.0, 0.0); //centered between the cameras, 5 units away
// Point3 landmark2(1.5, 5.0, 0.0);
//
// // noisy config
// boost::shared_ptr<Config> initConfig(new Config);
// initConfig->insert(1, pose1);
// initConfig->insert(2, pose2);
// initConfig->insert(1, landmark1);
// initConfig->insert(2, landmark2); // create two landmarks in same place
//
// // create ordering with lagrange multiplier included
// Ordering ord;
// ord += "x1", "x2", "l1", "l2", "L12";
//
// // create lagrange multipliers
// VSOptimizer::shared_vconfig initLagrangeConfig(new VectorConfig);
// initLagrangeConfig->insert("L12", Vector_(3, 0.0, 0.0, 0.0));
//
// // create optimizer
// VSOptimizer optimizer(graph, ord, initConfig, initLagrangeConfig);
//
// // optimize
// double start_error = optimizer.error();
// int maxIt = 5;
// for (int i=0; i<maxIt; ++i) {
// if (verbose) {
// cout << "\n ************************** \n"
// << " Iteration: " << i << endl;
// optimizer.config()->print("Config Before Iteration");
// optimizer.configLagrange()->print("Lagrange Before Iteration");
// optimizer = optimizer.iterate(VSOptimizer::FULL);
// }
// else
// optimizer = optimizer.iterate(VSOptimizer::SILENT);
// }
//
// if (verbose) cout << "Initial Error: " << start_error << "\n"
// << "Final Error: " << optimizer.error() << endl;
//
// // get the truth config
// boost::shared_ptr<Config> truthConfig = stereoExampleTruthConfig();
//
// if (verbose) {
// initConfig->print("Initial Config");
// truthConfig->print("Truth Config");
// optimizer.config()->print("After optimization");
// }
//
// // check if correct
// CHECK(assert_equal(*truthConfig,*(optimizer.config())));
//}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */