gtsam/gtsam_unstable/nonlinear/tests/testExpression.cpp

233 lines
7.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------1------------------------------------------- */
/**
* @file testExpression.cpp
* @date September 18, 2014
* @author Frank Dellaert
* @author Paul Furgale
* @brief unit tests for Block Automatic Differentiation
*/
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam_unstable/nonlinear/Expression.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/LieScalar.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/assign/list_of.hpp>
using boost::assign::list_of;
using boost::assign::map_list_of;
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
template<class CAL>
Point2 uncalibrate(const CAL& K, const Point2& p,
boost::optional<Matrix25&> Dcal, boost::optional<Matrix2&> Dp) {
return K.uncalibrate(p, Dcal, Dp);
}
static const Rot3 someR = Rot3::RzRyRx(1, 2, 3);
/* ************************************************************************* */
// Constant
TEST(Expression, constant) {
Expression<Rot3> R(someR);
Values values;
JacobianMap actualMap;
Rot3 actual = R.value(values, actualMap);
EXPECT(assert_equal(someR, actual));
JacobianMap expected;
EXPECT(actualMap == expected);
EXPECT_LONGS_EQUAL(0, R.traceSize())
}
/* ************************************************************************* */
// Leaf
TEST(Expression, Leaf) {
Expression<Rot3> R(100);
Values values;
values.insert(100, someR);
JacobianMap expected;
Matrix H = eye(3);
expected.push_back(make_pair(100, H.block(0, 0, 3, 3)));
JacobianMap actualMap2;
actualMap2.push_back(make_pair(100, H.block(0, 0, 3, 3)));
Rot3 actual2 = R.reverse(values, actualMap2);
EXPECT(assert_equal(someR, actual2));
EXPECT(actualMap2 == expected);
}
/* ************************************************************************* */
// Many Leaves
TEST(Expression, Leaves) {
Values values;
Point3 somePoint(1, 2, 3);
values.insert(Symbol('p', 10), somePoint);
std::vector<Expression<Point3> > points = createUnknowns<Point3>(10, 'p', 1);
EXPECT(assert_equal(somePoint,points.back().value(values)));
}
/* ************************************************************************* */
//TEST(Expression, NullaryMethod) {
// Expression<Point3> p(67);
// Expression<LieScalar> norm(p, &Point3::norm);
// Values values;
// values.insert(67,Point3(3,4,5));
// Augmented<LieScalar> a = norm.augmented(values);
// EXPECT(a.value() == sqrt(50));
// JacobianMap expected;
// expected[67] = (Matrix(1,3) << 3/sqrt(50),4/sqrt(50),5/sqrt(50));
// EXPECT(assert_equal(expected.at(67),a.jacobians().at(67)));
//}
/* ************************************************************************* */
// Binary(Leaf,Leaf)
namespace binary {
// Create leaves
Expression<Pose3> x(1);
Expression<Point3> p(2);
Expression<Point3> p_cam(x, &Pose3::transform_to, p);
}
/* ************************************************************************* */
// keys
TEST(Expression, BinaryKeys) {
set<Key> expected = list_of(1)(2);
EXPECT(expected == binary::p_cam.keys());
}
/* ************************************************************************* */
// dimensions
TEST(Expression, BinaryDimensions) {
map<Key, size_t> actual, expected = map_list_of<Key, size_t>(1, 6)(2, 3);
binary::p_cam.dims(actual);
EXPECT(actual==expected);
}
/* ************************************************************************* */
// dimensions
TEST(Expression, BinaryTraceSize) {
typedef BinaryExpression<Point3, Pose3, Point3> Binary;
size_t expectedTraceSize = sizeof(Binary::Record);
EXPECT_LONGS_EQUAL(expectedTraceSize, binary::p_cam.traceSize());
}
/* ************************************************************************* */
// Binary(Leaf,Unary(Binary(Leaf,Leaf)))
namespace tree {
using namespace binary;
// Create leaves
Expression<Cal3_S2> K(3);
// Create expression tree
Expression<Point2> projection(PinholeCamera<Cal3_S2>::project_to_camera, p_cam);
Expression<Point2> uv_hat(uncalibrate<Cal3_S2>, K, projection);
}
/* ************************************************************************* */
// keys
TEST(Expression, TreeKeys) {
set<Key> expected = list_of(1)(2)(3);
EXPECT(expected == tree::uv_hat.keys());
}
/* ************************************************************************* */
// dimensions
TEST(Expression, TreeDimensions) {
map<Key, size_t> actual, expected = map_list_of<Key, size_t>(1, 6)(2, 3)(3,
5);
tree::uv_hat.dims(actual);
EXPECT(actual==expected);
}
/* ************************************************************************* */
// TraceSize
TEST(Expression, TreeTraceSize) {
typedef UnaryExpression<Point2, Point3> Unary;
typedef BinaryExpression<Point3, Pose3, Point3> Binary1;
typedef BinaryExpression<Point2, Point2, Cal3_S2> Binary2;
size_t expectedTraceSize = sizeof(Unary::Record) + sizeof(Binary1::Record)
+ sizeof(Binary2::Record);
EXPECT_LONGS_EQUAL(expectedTraceSize, tree::uv_hat.traceSize());
}
/* ************************************************************************* */
TEST(Expression, compose1) {
// Create expression
Expression<Rot3> R1(1), R2(2);
Expression<Rot3> R3 = R1 * R2;
// Check keys
set<Key> expected = list_of(1)(2);
EXPECT(expected == R3.keys());
}
/* ************************************************************************* */
// Test compose with arguments referring to the same rotation
TEST(Expression, compose2) {
// Create expression
Expression<Rot3> R1(1), R2(1);
Expression<Rot3> R3 = R1 * R2;
// Check keys
set<Key> expected = list_of(1);
EXPECT(expected == R3.keys());
}
/* ************************************************************************* */
// Test compose with one arguments referring to constant rotation
TEST(Expression, compose3) {
// Create expression
Expression<Rot3> R1(Rot3::identity()), R2(3);
Expression<Rot3> R3 = R1 * R2;
// Check keys
set<Key> expected = list_of(3);
EXPECT(expected == R3.keys());
}
/* ************************************************************************* */
// Test with ternary function
Rot3 composeThree(const Rot3& R1, const Rot3& R2, const Rot3& R3,
boost::optional<Matrix3&> H1, boost::optional<Matrix3&> H2,
boost::optional<Matrix3&> H3) {
// return dummy derivatives (not correct, but that's ok for testing here)
if (H1)
*H1 = eye(3);
if (H2)
*H2 = eye(3);
if (H3)
*H3 = eye(3);
return R1 * (R2 * R3);
}
TEST(Expression, ternary) {
// Create expression
Expression<Rot3> A(1), B(2), C(3);
Expression<Rot3> ABC(composeThree, A, B, C);
// Check keys
set<Key> expected = list_of(1)(2)(3);
EXPECT(expected == ABC.keys());
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */