gtsam/gtsam_unstable/slam/TransformBtwRobotsUnaryFact...

246 lines
7.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file TransformBtwRobotsUnaryFactor.h
* @brief Unary factor for determining transformation between given trajectories of two robots
* @author Vadim Indelman
**/
#pragma once
#include <ostream>
#include <gtsam/base/Testable.h>
#include <gtsam/base/Lie.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/slam/BetweenFactor.h>
namespace gtsam {
/**
* A class for a measurement predicted by "between(config[key1],config[key2])"
* @tparam VALUE the Value type
* @addtogroup SLAM
*/
template<class VALUE>
class TransformBtwRobotsUnaryFactor: public NonlinearFactor {
public:
typedef VALUE T;
private:
typedef TransformBtwRobotsUnaryFactor<VALUE> This;
typedef gtsam::NonlinearFactor Base;
gtsam::Key key_;
VALUE measured_; /** The measurement */
gtsam::Values valA_; // given values for robot A map\trajectory
gtsam::Values valB_; // given values for robot B map\trajectory
gtsam::Key keyA_; // key of robot A to which the measurement refers
gtsam::Key keyB_; // key of robot B to which the measurement refers
SharedGaussian model_;
/** concept check by type */
GTSAM_CONCEPT_LIE_TYPE(T)
GTSAM_CONCEPT_TESTABLE_TYPE(T)
public:
// shorthand for a smart pointer to a factor
typedef typename boost::shared_ptr<TransformBtwRobotsUnaryFactor> shared_ptr;
/** default constructor - only use for serialization */
TransformBtwRobotsUnaryFactor() {}
/** Constructor */
TransformBtwRobotsUnaryFactor(Key key, const VALUE& measured, Key keyA, Key keyB,
const gtsam::Values& valA, const gtsam::Values& valB,
const SharedGaussian& model) :
Base(cref_list_of<1>(key)), key_(key), measured_(measured), keyA_(keyA), keyB_(keyB),
model_(model){
setValAValB(valA, valB);
}
virtual ~TransformBtwRobotsUnaryFactor() {}
/** Clone */
virtual gtsam::NonlinearFactor::shared_ptr clone() const { return boost::make_shared<This>(*this); }
/** implement functions needed for Testable */
/** print */
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::cout << s << "TransformBtwRobotsUnaryFactor("
<< keyFormatter(key_) << ")\n";
std::cout << "MR between factor keys: "
<< keyFormatter(keyA_) << ","
<< keyFormatter(keyB_) << "\n";
measured_.print(" measured: ");
model_->print(" noise model: ");
// Base::print(s, keyFormatter);
}
/** equals */
virtual bool equals(const NonlinearFactor& f, double tol=1e-9) const {
const This *t = dynamic_cast<const This*> (&f);
if(t && Base::equals(f))
return key_ == t->key_ && measured_.equals(t->measured_);
else
return false;
}
/** implement functions needed to derive from Factor */
/* ************************************************************************* */
void setValAValB(const gtsam::Values& valA, const gtsam::Values& valB){
if ( (!valA.exists(keyA_)) && (!valB.exists(keyA_)) && (!valA.exists(keyB_)) && (!valB.exists(keyB_)) )
throw("something is wrong!");
// TODO: make sure the two keys belong to different robots
if (valA.exists(keyA_)){
valA_ = valA;
valB_ = valB;
}
else {
valA_ = valB;
valB_ = valA;
}
}
/* ************************************************************************* */
virtual double error(const gtsam::Values& x) const {
return whitenedError(x).squaredNorm();
}
/* ************************************************************************* */
/**
* Linearize a non-linearFactorN to get a gtsam::GaussianFactor,
* \f$ Ax-b \approx h(x+\delta x)-z = h(x) + A \delta x - z \f$
* Hence \f$ b = z - h(x) = - \mathtt{error\_vector}(x) \f$
*/
/* This version of linearize recalculates the noise model each time */
virtual boost::shared_ptr<gtsam::GaussianFactor> linearize(const gtsam::Values& x) const {
// Only linearize if the factor is active
if (!this->active(x))
return boost::shared_ptr<gtsam::JacobianFactor>();
//std::cout<<"About to linearize"<<std::endl;
gtsam::Matrix A1;
std::vector<gtsam::Matrix> A(this->size());
gtsam::Vector b = -whitenedError(x, A);
A1 = A[0];
return gtsam::GaussianFactor::shared_ptr(
new gtsam::JacobianFactor(key_, A1, b, gtsam::noiseModel::Unit::Create(b.size())));
}
/* ************************************************************************* */
gtsam::Vector whitenedError(const gtsam::Values& x,
boost::optional<std::vector<gtsam::Matrix>&> H = boost::none) const {
bool debug = true;
Matrix H_compose, H_between1, H_dummy;
T orgA_T_currA = valA_.at<T>(keyA_);
T orgB_T_currB = valB_.at<T>(keyB_);
T orgA_T_orgB = x.at<T>(key_);
T orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB, H_compose, H_dummy);
T currA_T_currB_pred = orgA_T_currA.between(orgA_T_currB, H_dummy, H_between1);
T currA_T_currB_msr = measured_;
Vector err_unw = currA_T_currB_msr.localCoordinates(currA_T_currB_pred);
Vector err_wh = err_unw;
if (H) {
(*H)[0] = H_compose * H_between1;
model_->WhitenSystem(*H, err_wh);
}
else {
model_->whitenInPlace(err_wh);
}
Vector err_wh2 = model_->whiten(err_wh);
if (debug){
// std::cout<<"err_wh: "<<err_wh[0]<<err_wh[1]<<err_wh[2]<<std::endl;
// std::cout<<"err_wh2: "<<err_wh2[0]<<err_wh2[1]<<err_wh2[2]<<std::endl;
// std::cout<<"H_compose - rows, cols, : "<<H_compose.rows()<<", "<< H_compose.cols()<<std::endl;
// std::cout<<"H_between1 - rows, cols, : "<<H_between1.rows()<<", "<< H_between1.cols()<<std::endl;
// std::cout<<"H_unwh - rows, cols, : "<<H_unwh.rows()<<", "<< H_unwh.cols()<<std::endl;
// std::cout<<"H_unwh: "<<std:endl<<H_unwh[0]
}
return err_wh;
}
/* ************************************************************************* */
gtsam::Vector unwhitenedError(const gtsam::Values& x) const {
T orgA_T_currA = valA_.at<T>(keyA_);
T orgB_T_currB = valB_.at<T>(keyB_);
T orgA_T_orgB = x.at<T>(key_);
T orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB);
T currA_T_currB_pred = orgA_T_currA.between(orgA_T_currB);
T currA_T_currB_msr = measured_;
return currA_T_currB_msr.localCoordinates(currA_T_currB_pred);
}
/* ************************************************************************* */
/** number of variables attached to this factor */
std::size_t size() const {
return 1;
}
virtual size_t dim() const {
return model_->R().rows() + model_->R().cols();
}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("NonlinearFactor",
boost::serialization::base_object<Base>(*this));
//ar & BOOST_SERIALIZATION_NVP(measured_);
}
}; // \class TransformBtwRobotsUnaryFactor
} /// namespace gtsam