231 lines
6.7 KiB
C++
231 lines
6.7 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------1-------------------------------------------
|
|
*/
|
|
|
|
/**
|
|
* @file testBasisFactors.cpp
|
|
* @date May 31, 2020
|
|
* @author Varun Agrawal
|
|
* @brief unit tests for factors in BasisFactors.h
|
|
*/
|
|
|
|
#include <gtsam/basis/Basis.h>
|
|
#include <gtsam/basis/BasisFactors.h>
|
|
#include <gtsam/basis/Chebyshev2.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
#include <gtsam/nonlinear/FunctorizedFactor.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/nonlinear/factorTesting.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/base/TestableAssertions.h>
|
|
#include <gtsam/base/Vector.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
using gtsam::noiseModel::Isotropic;
|
|
using gtsam::Pose2;
|
|
using gtsam::Vector;
|
|
using gtsam::Values;
|
|
using gtsam::Chebyshev2;
|
|
using gtsam::ParameterMatrix;
|
|
using gtsam::LevenbergMarquardtParams;
|
|
using gtsam::LevenbergMarquardtOptimizer;
|
|
using gtsam::NonlinearFactorGraph;
|
|
using gtsam::NonlinearOptimizerParams;
|
|
|
|
constexpr size_t N = 2;
|
|
|
|
// Key used in all tests
|
|
const gtsam::Symbol key('X', 0);
|
|
|
|
//******************************************************************************
|
|
TEST(BasisFactors, EvaluationFactor) {
|
|
using gtsam::EvaluationFactor;
|
|
|
|
double measured = 0;
|
|
|
|
auto model = Isotropic::Sigma(1, 1.0);
|
|
EvaluationFactor<Chebyshev2> factor(key, measured, model, N, 0);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.add(factor);
|
|
|
|
Vector functionValues(N);
|
|
functionValues.setZero();
|
|
|
|
Values initial;
|
|
initial.insert<Vector>(key, functionValues);
|
|
|
|
LevenbergMarquardtParams parameters;
|
|
parameters.setMaxIterations(20);
|
|
Values result =
|
|
LevenbergMarquardtOptimizer(graph, initial, parameters).optimize();
|
|
|
|
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9);
|
|
}
|
|
|
|
//******************************************************************************
|
|
TEST(BasisFactors, VectorEvaluationFactor) {
|
|
using gtsam::VectorEvaluationFactor;
|
|
const size_t M = 4;
|
|
|
|
const Vector measured = Vector::Zero(M);
|
|
|
|
auto model = Isotropic::Sigma(M, 1.0);
|
|
VectorEvaluationFactor<Chebyshev2, M> factor(key, measured, model, N, 0);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.add(factor);
|
|
|
|
ParameterMatrix<M> stateMatrix(N);
|
|
|
|
Values initial;
|
|
initial.insert<ParameterMatrix<M>>(key, stateMatrix);
|
|
|
|
LevenbergMarquardtParams parameters;
|
|
parameters.setMaxIterations(20);
|
|
Values result =
|
|
LevenbergMarquardtOptimizer(graph, initial, parameters).optimize();
|
|
|
|
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9);
|
|
}
|
|
|
|
//******************************************************************************
|
|
TEST(BasisFactors, Print) {
|
|
using gtsam::VectorEvaluationFactor;
|
|
const size_t M = 1;
|
|
|
|
const Vector measured = Vector::Ones(M) * 42;
|
|
|
|
auto model = Isotropic::Sigma(M, 1.0);
|
|
VectorEvaluationFactor<Chebyshev2, M> factor(key, measured, model, N, 0);
|
|
|
|
std::string expected =
|
|
" keys = { X0 }\n"
|
|
" noise model: unit (1) \n"
|
|
"FunctorizedFactor(X0)\n"
|
|
" measurement: [\n"
|
|
" 42\n"
|
|
"]\n"
|
|
" noise model sigmas: 1\n";
|
|
|
|
EXPECT(assert_print_equal(expected, factor));
|
|
}
|
|
|
|
//******************************************************************************
|
|
TEST(BasisFactors, VectorComponentFactor) {
|
|
using gtsam::VectorComponentFactor;
|
|
const int P = 4;
|
|
const size_t i = 2;
|
|
const double measured = 0.0, t = 3.0, a = 2.0, b = 4.0;
|
|
auto model = Isotropic::Sigma(1, 1.0);
|
|
VectorComponentFactor<Chebyshev2, P> factor(key, measured, model, N, i,
|
|
t, a, b);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.add(factor);
|
|
|
|
ParameterMatrix<P> stateMatrix(N);
|
|
|
|
Values initial;
|
|
initial.insert<ParameterMatrix<P>>(key, stateMatrix);
|
|
|
|
LevenbergMarquardtParams parameters;
|
|
parameters.setMaxIterations(20);
|
|
Values result =
|
|
LevenbergMarquardtOptimizer(graph, initial, parameters).optimize();
|
|
|
|
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9);
|
|
}
|
|
|
|
//******************************************************************************
|
|
TEST(BasisFactors, ManifoldEvaluationFactor) {
|
|
using gtsam::ManifoldEvaluationFactor;
|
|
const Pose2 measured;
|
|
const double t = 3.0, a = 2.0, b = 4.0;
|
|
auto model = Isotropic::Sigma(3, 1.0);
|
|
ManifoldEvaluationFactor<Chebyshev2, Pose2> factor(key, measured, model, N,
|
|
t, a, b);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.add(factor);
|
|
|
|
ParameterMatrix<3> stateMatrix(N);
|
|
|
|
Values initial;
|
|
initial.insert<ParameterMatrix<3>>(key, stateMatrix);
|
|
|
|
LevenbergMarquardtParams parameters;
|
|
parameters.setMaxIterations(20);
|
|
Values result =
|
|
LevenbergMarquardtOptimizer(graph, initial, parameters).optimize();
|
|
|
|
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9);
|
|
}
|
|
|
|
//******************************************************************************
|
|
TEST(BasisFactors, VecDerivativePrior) {
|
|
using gtsam::VectorDerivativeFactor;
|
|
const size_t M = 4;
|
|
|
|
const Vector measured = Vector::Zero(M);
|
|
auto model = Isotropic::Sigma(M, 1.0);
|
|
VectorDerivativeFactor<Chebyshev2, M> vecDPrior(key, measured, model, N, 0);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.add(vecDPrior);
|
|
|
|
ParameterMatrix<M> stateMatrix(N);
|
|
|
|
Values initial;
|
|
initial.insert<ParameterMatrix<M>>(key, stateMatrix);
|
|
|
|
LevenbergMarquardtParams parameters;
|
|
parameters.setMaxIterations(20);
|
|
Values result =
|
|
LevenbergMarquardtOptimizer(graph, initial, parameters).optimize();
|
|
|
|
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9);
|
|
}
|
|
|
|
//******************************************************************************
|
|
TEST(BasisFactors, ComponentDerivativeFactor) {
|
|
using gtsam::ComponentDerivativeFactor;
|
|
const size_t M = 4;
|
|
|
|
double measured = 0;
|
|
auto model = Isotropic::Sigma(1, 1.0);
|
|
ComponentDerivativeFactor<Chebyshev2, M> controlDPrior(key, measured, model,
|
|
N, 0, 0);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.add(controlDPrior);
|
|
|
|
Values initial;
|
|
ParameterMatrix<M> stateMatrix(N);
|
|
initial.insert<ParameterMatrix<M>>(key, stateMatrix);
|
|
|
|
LevenbergMarquardtParams parameters;
|
|
parameters.setMaxIterations(20);
|
|
Values result =
|
|
LevenbergMarquardtOptimizer(graph, initial, parameters).optimize();
|
|
|
|
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|