gtsam/gtsam/navigation/tests/testImuFactor.cpp

568 lines
23 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testImuFactor.cpp
* @brief Unit test for ImuFactor
* @author Luca Carlone, Stephen Williams, Richard Roberts
*/
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/base/LieVector.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/bind.hpp>
#include <list>
using namespace std;
using namespace gtsam;
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::V;
using symbol_shorthand::B;
/* ************************************************************************* */
namespace {
Vector callEvaluateError(const ImuFactor& factor,
const Pose3& pose_i, const LieVector& vel_i, const Pose3& pose_j, const LieVector& vel_j,
const imuBias::ConstantBias& bias)
{
return factor.evaluateError(pose_i, vel_i, pose_j, vel_j, bias);
}
Rot3 evaluateRotationError(const ImuFactor& factor,
const Pose3& pose_i, const LieVector& vel_i, const Pose3& pose_j, const LieVector& vel_j,
const imuBias::ConstantBias& bias)
{
return Rot3::Expmap(factor.evaluateError(pose_i, vel_i, pose_j, vel_j, bias).tail(3) ) ;
}
ImuFactor::PreintegratedMeasurements evaluatePreintegratedMeasurements(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0)
)
{
ImuFactor::PreintegratedMeasurements result(bias, Matrix3::Identity(),
Matrix3::Identity(), Matrix3::Identity());
list<Vector3>::const_iterator itAcc = measuredAccs.begin();
list<Vector3>::const_iterator itOmega = measuredOmegas.begin();
list<double>::const_iterator itDeltaT = deltaTs.begin();
for( ; itAcc != measuredAccs.end(); ++itAcc, ++itOmega, ++itDeltaT) {
result.integrateMeasurement(*itAcc, *itOmega, *itDeltaT);
}
return result;
}
Vector3 evaluatePreintegratedMeasurementsPosition(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaPij;
}
Vector3 evaluatePreintegratedMeasurementsVelocity(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaVij;
}
Rot3 evaluatePreintegratedMeasurementsRotation(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs, initialRotationRate).deltaRij;
}
Rot3 evaluateRotation(const Vector3 measuredOmega, const Vector3 biasOmega, const double deltaT)
{
return Rot3::Expmap((measuredOmega - biasOmega) * deltaT);
}
Vector3 evaluateLogRotation(const Vector3 thetahat, const Vector3 deltatheta)
{
return Rot3::Logmap( Rot3::Expmap(thetahat).compose( Rot3::Expmap(deltatheta) ) );
}
}
/* ************************************************************************* */
TEST( ImuFactor, PreintegratedMeasurements )
{
// Linearization point
imuBias::ConstantBias bias(Vector3(0,0,0), Vector3(0,0,0)); ///< Current estimate of acceleration and angular rate biases
// Measurements
Vector3 measuredAcc(0.1, 0.0, 0.0);
Vector3 measuredOmega(M_PI/100.0, 0.0, 0.0);
double deltaT = 0.5;
// Expected preintegrated values
Vector3 expectedDeltaP1; expectedDeltaP1 << 0.5*0.1*0.5*0.5, 0, 0;
Vector3 expectedDeltaV1(0.05, 0.0, 0.0);
Rot3 expectedDeltaR1 = Rot3::RzRyRx(0.5 * M_PI/100.0, 0.0, 0.0);
double expectedDeltaT1(0.5);
bool use2ndOrderIntegration = true;
// Actual preintegrated values
ImuFactor::PreintegratedMeasurements actual1(bias, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), use2ndOrderIntegration);
actual1.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
EXPECT(assert_equal(Vector(expectedDeltaP1), Vector(actual1.deltaPij), 1e-6));
EXPECT(assert_equal(Vector(expectedDeltaV1), Vector(actual1.deltaVij), 1e-6));
EXPECT(assert_equal(expectedDeltaR1, actual1.deltaRij, 1e-6));
DOUBLES_EQUAL(expectedDeltaT1, actual1.deltaTij, 1e-6);
// Integrate again
Vector3 expectedDeltaP2; expectedDeltaP2 << 0.025 + expectedDeltaP1(0) + 0.5*0.1*0.5*0.5, 0, 0;
Vector3 expectedDeltaV2 = Vector3(0.05, 0.0, 0.0) + expectedDeltaR1.matrix() * measuredAcc * 0.5;
Rot3 expectedDeltaR2 = Rot3::RzRyRx(2.0 * 0.5 * M_PI/100.0, 0.0, 0.0);
double expectedDeltaT2(1);
// Actual preintegrated values
ImuFactor::PreintegratedMeasurements actual2 = actual1;
actual2.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
EXPECT(assert_equal(Vector(expectedDeltaP2), Vector(actual2.deltaPij), 1e-6));
EXPECT(assert_equal(Vector(expectedDeltaV2), Vector(actual2.deltaVij), 1e-6));
EXPECT(assert_equal(expectedDeltaR2, actual2.deltaRij, 1e-6));
DOUBLES_EQUAL(expectedDeltaT2, actual2.deltaTij, 1e-6);
}
/* ************************************************************************* */
TEST( ImuFactor, Error )
{
// Linearization point
imuBias::ConstantBias bias; // Bias
Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/100.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
// Measurements
Vector3 gravity; gravity << 0, 0, 9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0, 0, 0;
Vector3 measuredOmega; measuredOmega << M_PI/100, 0, 0;
Vector3 measuredAcc = x1.rotation().unrotate(-Point3(gravity)).vector();
double deltaT = 1.0;
bool use2ndOrderIntegration = true;
ImuFactor::PreintegratedMeasurements pre_int_data(bias, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), use2ndOrderIntegration);
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
Vector errorActual = factor.evaluateError(x1, v1, x2, v2, bias);
// Expected error
Vector errorExpected(9); errorExpected << 0, 0, 0, 0, 0, 0, 0, 0, 0;
EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
// Expected Jacobians
Matrix H1e = numericalDerivative11<Pose3>(
boost::bind(&callEvaluateError, factor, _1, v1, x2, v2, bias), x1);
Matrix H2e = numericalDerivative11<LieVector>(
boost::bind(&callEvaluateError, factor, x1, _1, x2, v2, bias), v1);
Matrix H3e = numericalDerivative11<Pose3>(
boost::bind(&callEvaluateError, factor, x1, v1, _1, v2, bias), x2);
Matrix H4e = numericalDerivative11<LieVector>(
boost::bind(&callEvaluateError, factor, x1, v1, x2, _1, bias), v2);
Matrix H5e = numericalDerivative11<imuBias::ConstantBias>(
boost::bind(&callEvaluateError, factor, x1, v1, x2, v2, _1), bias);
// Check rotation Jacobians
Matrix RH1e = numericalDerivative11<Rot3,Pose3>(
boost::bind(&evaluateRotationError, factor, _1, v1, x2, v2, bias), x1);
Matrix RH3e = numericalDerivative11<Rot3,Pose3>(
boost::bind(&evaluateRotationError, factor, x1, v1, _1, v2, bias), x2);
// Actual Jacobians
Matrix H1a, H2a, H3a, H4a, H5a;
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
// positions and velocities
Matrix H1etop6 = H1e.topRows(6);
Matrix H1atop6 = H1a.topRows(6);
EXPECT(assert_equal(H1etop6, H1atop6));
// rotations
EXPECT(assert_equal(RH1e, H1a.bottomRows(3), 1e-5)); // 1e-5 needs to be added only when using quaternions for rotations
EXPECT(assert_equal(H2e, H2a));
// positions and velocities
Matrix H3etop6 = H3e.topRows(6);
Matrix H3atop6 = H3a.topRows(6);
EXPECT(assert_equal(H3etop6, H3atop6));
// rotations
EXPECT(assert_equal(RH3e, H3a.bottomRows(3), 1e-5)); // 1e-5 needs to be added only when using quaternions for rotations
EXPECT(assert_equal(H4e, H4a));
// EXPECT(assert_equal(H5e, H5a));
}
/* ************************************************************************* */
TEST( ImuFactor, ErrorWithBiases )
{
// Linearization point
// Vector bias(6); bias << 0.2, 0, 0, 0.1, 0, 0; // Biases (acc, rot)
// Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
// LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
// Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/10.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
// LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/4.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
// Measurements
Vector3 gravity; gravity << 0, 0, 9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0, 0.1, 0.1;
Vector3 measuredOmega; measuredOmega << 0, 0, M_PI/10.0+0.3;
Vector3 measuredAcc = x1.rotation().unrotate(-Point3(gravity)).vector() + Vector3(0.2,0.0,0.0);
double deltaT = 1.0;
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// ImuFactor::PreintegratedMeasurements pre_int_data(bias.head(3), bias.tail(3));
// pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
SETDEBUG("ImuFactor evaluateError", false);
Vector errorActual = factor.evaluateError(x1, v1, x2, v2, bias);
SETDEBUG("ImuFactor evaluateError", false);
// Expected error
Vector errorExpected(9); errorExpected << 0, 0, 0, 0, 0, 0, 0, 0, 0;
// EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
// Expected Jacobians
Matrix H1e = numericalDerivative11<Pose3>(
boost::bind(&callEvaluateError, factor, _1, v1, x2, v2, bias), x1);
Matrix H2e = numericalDerivative11<LieVector>(
boost::bind(&callEvaluateError, factor, x1, _1, x2, v2, bias), v1);
Matrix H3e = numericalDerivative11<Pose3>(
boost::bind(&callEvaluateError, factor, x1, v1, _1, v2, bias), x2);
Matrix H4e = numericalDerivative11<LieVector>(
boost::bind(&callEvaluateError, factor, x1, v1, x2, _1, bias), v2);
Matrix H5e = numericalDerivative11<imuBias::ConstantBias>(
boost::bind(&callEvaluateError, factor, x1, v1, x2, v2, _1), bias);
// Check rotation Jacobians
Matrix RH1e = numericalDerivative11<Rot3,Pose3>(
boost::bind(&evaluateRotationError, factor, _1, v1, x2, v2, bias), x1);
Matrix RH3e = numericalDerivative11<Rot3,Pose3>(
boost::bind(&evaluateRotationError, factor, x1, v1, _1, v2, bias), x2);
Matrix RH5e = numericalDerivative11<Rot3,imuBias::ConstantBias>(
boost::bind(&evaluateRotationError, factor, x1, v1, x2, v2, _1), bias);
// Actual Jacobians
Matrix H1a, H2a, H3a, H4a, H5a;
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
EXPECT(assert_equal(H1e, H1a));
EXPECT(assert_equal(H2e, H2a));
EXPECT(assert_equal(H3e, H3a));
EXPECT(assert_equal(H4e, H4a));
EXPECT(assert_equal(H5e, H5a));
}
/* ************************************************************************* */
TEST( ImuFactor, PartialDerivativeExpmap )
{
// Linearization point
Vector3 biasOmega; biasOmega << 0,0,0; ///< Current estimate of rotation rate bias
// Measurements
Vector3 measuredOmega; measuredOmega << 0.1, 0, 0;
double deltaT = 0.5;
// Compute numerical derivatives
Matrix expectedDelRdelBiasOmega = numericalDerivative11<Rot3, LieVector>(boost::bind(
&evaluateRotation, measuredOmega, _1, deltaT), LieVector(biasOmega));
const Matrix3 Jr = Rot3::rightJacobianExpMapSO3((measuredOmega - biasOmega) * deltaT);
Matrix3 actualdelRdelBiasOmega = - Jr * deltaT; // the delta bias appears with the minus sign
// Compare Jacobians
EXPECT(assert_equal(expectedDelRdelBiasOmega, actualdelRdelBiasOmega, 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
}
/* ************************************************************************* */
TEST( ImuFactor, PartialDerivativeLogmap )
{
// Linearization point
Vector3 thetahat; thetahat << 0.1,0.1,0; ///< Current estimate of rotation rate bias
// Measurements
Vector3 deltatheta; deltatheta << 0, 0, 0;
// Compute numerical derivatives
Matrix expectedDelFdeltheta = numericalDerivative11<LieVector>(boost::bind(
&evaluateLogRotation, thetahat, _1), LieVector(deltatheta));
const Vector3 x = thetahat; // parametrization of so(3)
const Matrix3 X = skewSymmetric(x); // element of Lie algebra so(3): X = x^
double normx = norm_2(x);
const Matrix3 actualDelFdeltheta = Matrix3::Identity() +
0.5 * X + (1/(normx*normx) - (1+cos(normx))/(2*normx * sin(normx)) ) * X * X;
// std::cout << "actualDelFdeltheta" << actualDelFdeltheta << std::endl;
// std::cout << "expectedDelFdeltheta" << expectedDelFdeltheta << std::endl;
// Compare Jacobians
EXPECT(assert_equal(expectedDelFdeltheta, actualDelFdeltheta));
}
/* ************************************************************************* */
TEST( ImuFactor, fistOrderExponential )
{
// Linearization point
Vector3 biasOmega; biasOmega << 0,0,0; ///< Current estimate of rotation rate bias
// Measurements
Vector3 measuredOmega; measuredOmega << 0.1, 0, 0;
double deltaT = 1.0;
// change w.r.t. linearization point
double alpha = 0.0;
Vector3 deltabiasOmega; deltabiasOmega << alpha,alpha,alpha;
const Matrix3 Jr = Rot3::rightJacobianExpMapSO3((measuredOmega - biasOmega) * deltaT);
Matrix3 delRdelBiasOmega = - Jr * deltaT; // the delta bias appears with the minus sign
const Matrix expectedRot = Rot3::Expmap((measuredOmega - biasOmega - deltabiasOmega) * deltaT).matrix();
const Matrix3 hatRot = Rot3::Expmap((measuredOmega - biasOmega) * deltaT).matrix();
const Matrix3 actualRot =
hatRot * Rot3::Expmap(delRdelBiasOmega * deltabiasOmega).matrix();
//hatRot * (Matrix3::Identity() + skewSymmetric(delRdelBiasOmega * deltabiasOmega));
// Compare Jacobians
EXPECT(assert_equal(expectedRot, actualRot));
}
/* ************************************************************************* */
TEST( ImuFactor, FirstOrderPreIntegratedMeasurements )
{
// Linearization point
imuBias::ConstantBias bias; ///< Current estimate of acceleration and rotation rate biases
Pose3 body_P_sensor(Rot3::Expmap(Vector3(0,0.1,0.1)), Point3(1, 0, 1));
// Measurements
list<Vector3> measuredAccs, measuredOmegas;
list<double> deltaTs;
measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
deltaTs.push_back(0.01);
measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
deltaTs.push_back(0.01);
for(int i=1;i<100;i++)
{
measuredAccs.push_back(Vector3(0.05, 0.09, 0.01));
measuredOmegas.push_back(Vector3(M_PI/100.0, M_PI/300.0, 2*M_PI/100.0));
deltaTs.push_back(0.01);
}
// Actual preintegrated values
ImuFactor::PreintegratedMeasurements preintegrated =
evaluatePreintegratedMeasurements(bias, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0));
// Compute numerical derivatives
Matrix expectedDelPdelBias = numericalDerivative11<imuBias::ConstantBias>(
boost::bind(&evaluatePreintegratedMeasurementsPosition, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
Matrix expectedDelPdelBiasAcc = expectedDelPdelBias.leftCols(3);
Matrix expectedDelPdelBiasOmega = expectedDelPdelBias.rightCols(3);
Matrix expectedDelVdelBias = numericalDerivative11<imuBias::ConstantBias>(
boost::bind(&evaluatePreintegratedMeasurementsVelocity, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
Matrix expectedDelVdelBiasAcc = expectedDelVdelBias.leftCols(3);
Matrix expectedDelVdelBiasOmega = expectedDelVdelBias.rightCols(3);
Matrix expectedDelRdelBias = numericalDerivative11<Rot3,imuBias::ConstantBias>(
boost::bind(&evaluatePreintegratedMeasurementsRotation, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
Matrix expectedDelRdelBiasAcc = expectedDelRdelBias.leftCols(3);
Matrix expectedDelRdelBiasOmega = expectedDelRdelBias.rightCols(3);
// Compare Jacobians
EXPECT(assert_equal(expectedDelPdelBiasAcc, preintegrated.delPdelBiasAcc));
EXPECT(assert_equal(expectedDelPdelBiasOmega, preintegrated.delPdelBiasOmega));
EXPECT(assert_equal(expectedDelVdelBiasAcc, preintegrated.delVdelBiasAcc));
EXPECT(assert_equal(expectedDelVdelBiasOmega, preintegrated.delVdelBiasOmega));
EXPECT(assert_equal(expectedDelRdelBiasAcc, Matrix::Zero(3,3)));
EXPECT(assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega, 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
}
#include <gtsam/linear/GaussianFactorGraph.h>
/* ************************************************************************* */
TEST( ImuFactor, LinearizeTiming)
{
// Linearization point
Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/100.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
imuBias::ConstantBias bias(Vector3(0.001, 0.002, 0.008), Vector3(0.002, 0.004, 0.012));
// Pre-integrator
imuBias::ConstantBias biasHat(Vector3(0, 0, 0.10), Vector3(0, 0, 0.10));
Vector3 gravity; gravity << 0, 0, 9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0.0001, 0, 0.01;
ImuFactor::PreintegratedMeasurements pre_int_data(biasHat, Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity());
// Pre-integrate Measurements
Vector3 measuredAcc(0.1, 0.0, 0.0);
Vector3 measuredOmega(M_PI/100.0, 0.0, 0.0);
double deltaT = 0.5;
for(size_t i = 0; i < 50; ++i) {
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
}
// Create factor
noiseModel::Base::shared_ptr model = noiseModel::Gaussian::Covariance(pre_int_data.preintegratedMeasurementsCovariance());
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis, model);
Values values;
values.insert(X(1), x1);
values.insert(X(2), x2);
values.insert(V(1), v1);
values.insert(V(2), v2);
values.insert(B(1), bias);
Ordering ordering;
ordering.push_back(X(1));
ordering.push_back(V(1));
ordering.push_back(X(2));
ordering.push_back(V(2));
ordering.push_back(B(1));
GaussianFactorGraph graph;
gttic_(LinearizeTiming);
for(size_t i = 0; i < 100000; ++i) {
GaussianFactor::shared_ptr g = factor.linearize(values, ordering);
graph.push_back(g);
}
gttoc_(LinearizeTiming);
tictoc_finishedIteration_();
std::cout << "Linear Error: " << graph.error(values.zeroVectors(ordering)) << std::endl;
tictoc_print_();
}
/* ************************************************************************* */
TEST( ImuFactor, ErrorWithBiasesAndSensorBodyDisplacement )
{
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
LieVector v1((Vector(3) << 0.5, 0.0, 0.0));
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/4.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
LieVector v2((Vector(3) << 0.5, 0.0, 0.0));
// Measurements
Vector3 gravity; gravity << 0, 0, 9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0, 0.1, 0.1;
Vector3 measuredOmega; measuredOmega << 0, 0, M_PI/10.0+0.3;
Vector3 measuredAcc = x1.rotation().unrotate(-Point3(gravity)).vector() + Vector3(0.2,0.0,0.0);
double deltaT = 1.0;
const Pose3 body_P_sensor(Rot3::Expmap(Vector3(0,0.10,0.10)), Point3(1,0,0));
// ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0),
// Vector3(0.0, 0.0, 0.0)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), measuredOmega);
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0),
Vector3(0.0, 0.0, 0.0)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
// Expected Jacobians
Matrix H1e = numericalDerivative11<Pose3>(
boost::bind(&callEvaluateError, factor, _1, v1, x2, v2, bias), x1);
Matrix H2e = numericalDerivative11<LieVector>(
boost::bind(&callEvaluateError, factor, x1, _1, x2, v2, bias), v1);
Matrix H3e = numericalDerivative11<Pose3>(
boost::bind(&callEvaluateError, factor, x1, v1, _1, v2, bias), x2);
Matrix H4e = numericalDerivative11<LieVector>(
boost::bind(&callEvaluateError, factor, x1, v1, x2, _1, bias), v2);
Matrix H5e = numericalDerivative11<imuBias::ConstantBias>(
boost::bind(&callEvaluateError, factor, x1, v1, x2, v2, _1), bias);
// Check rotation Jacobians
Matrix RH1e = numericalDerivative11<Rot3,Pose3>(
boost::bind(&evaluateRotationError, factor, _1, v1, x2, v2, bias), x1);
Matrix RH3e = numericalDerivative11<Rot3,Pose3>(
boost::bind(&evaluateRotationError, factor, x1, v1, _1, v2, bias), x2);
Matrix RH5e = numericalDerivative11<Rot3,imuBias::ConstantBias>(
boost::bind(&evaluateRotationError, factor, x1, v1, x2, v2, _1), bias);
// Actual Jacobians
Matrix H1a, H2a, H3a, H4a, H5a;
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
EXPECT(assert_equal(H1e, H1a));
EXPECT(assert_equal(H2e, H2a));
EXPECT(assert_equal(H3e, H3a));
EXPECT(assert_equal(H4e, H4a));
EXPECT(assert_equal(H5e, H5a));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */