gtsam/gtsam/navigation/Scenario.h

99 lines
3.2 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Scenario.h
* @brief Simple class to test navigation scenarios
* @author Frank Dellaert
*/
#pragma once
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/geometry/Pose3.h>
namespace gtsam {
/**
* Simple IMU simulator with constant twist 3D trajectory.
* It is also assumed that gravity is magically counteracted and has no effect
* on trajectory. Hence, a simulated IMU yields the actual body angular
* velocity, and negative G acceleration plus the acceleration created by the
* rotating body frame.
*/
class Scenario {
public:
/// Construct scenario with constant twist [w,v]
Scenario(const Vector3& w, const Vector3& v,
double imuSampleTime = 1.0 / 100.0, double gyroSigma = 0.17,
double accSigma = 0.01)
: twist_((Vector6() << w, v).finished()),
imuSampleTime_(imuSampleTime),
gyroNoiseModel_(noiseModel::Isotropic::Sigma(3, gyroSigma)),
accNoiseModel_(noiseModel::Isotropic::Sigma(3, accSigma)) {}
const double& imuSampleTime() const { return imuSampleTime_; }
// NOTE(frank): hardcoded for now with Z up (gravity points in negative Z)
// also, uses g=10 for easy debugging
Vector3 gravity() const { return Vector3(0, 0, -10.0); }
const noiseModel::Diagonal::shared_ptr& gyroNoiseModel() const {
return gyroNoiseModel_;
}
const noiseModel::Diagonal::shared_ptr& accNoiseModel() const {
return accNoiseModel_;
}
Matrix3 gyroCovariance() const { return gyroNoiseModel_->covariance(); }
Matrix3 accCovariance() const { return accNoiseModel_->covariance(); }
Vector3 angularVelocityInBody() const { return twist_.head<3>(); }
Vector3 linearVelocityInBody() const { return twist_.tail<3>(); }
/// Rotation of body in nav frame at time t
Rot3 rotAtTime(double t) const {
return Rot3::Expmap(angularVelocityInBody() * t);
}
/// Pose of body in nav frame at time t
Pose3 pose(double t) const { return Pose3::Expmap(twist_ * t); }
/// Velocity in nav frame at time t
Vector3 velocity(double t) const {
const Rot3 nRb = rotAtTime(t);
return nRb * linearVelocityInBody();
}
// acceleration in nav frame
Vector3 acceleration(double t) const {
const Vector3 centripetalAcceleration =
angularVelocityInBody().cross(linearVelocityInBody());
const Rot3 nRb = rotAtTime(t);
return nRb * centripetalAcceleration - gravity();
}
// acceleration in body frame frame
Vector3 accelerationInBody(double t) const {
const Vector3 centripetalAcceleration =
angularVelocityInBody().cross(linearVelocityInBody());
const Rot3 nRb = rotAtTime(t);
return centripetalAcceleration - nRb.transpose() * gravity();
}
private:
Vector6 twist_;
double imuSampleTime_;
noiseModel::Diagonal::shared_ptr gyroNoiseModel_, accNoiseModel_;
};
} // namespace gtsam