gtsam/gtsam/nonlinear/NonlinearEquality.h

354 lines
11 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* @file NonlinearEquality.h
* @brief Factor to handle enforced equality between factors
* @author Alex Cunningham
*/
#pragma once
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/Manifold.h>
#include <boost/bind/bind.hpp>
#include <limits>
#include <iostream>
#include <cmath>
namespace gtsam {
/**
* An equality factor that forces either one variable to a constant,
* or a set of variables to be equal to each other.
*
* Depending on flag, throws an error at linearization if the constraints are not met.
*
* Switchable implementation:
* - ALLLOW_ERROR : if we allow that there can be nonzero error, does not throw, and uses gain
* - ONLY_EXACT : throws error at linearization if not at exact feasible point, and infinite error
*
* \nosubgrouping
*/
template<class VALUE>
class NonlinearEquality: public NoiseModelFactorN<VALUE> {
public:
typedef VALUE T;
using NoiseModelFactor1<VALUE>::evaluateError;
private:
// feasible value
T feasible_;
// error handling flag
bool allow_error_;
// error gain in allow error case
double error_gain_;
// typedef to this class
using This = NonlinearEquality<VALUE>;
// typedef to base class
using Base = NoiseModelFactorN<VALUE>;
public:
/// Function that compares two values.
using CompareFunction = std::function<bool(const T&, const T&)>;
CompareFunction compare_;
/// Default constructor - only for serialization
NonlinearEquality() {
}
~NonlinearEquality() override {
}
/// @name Standard Constructors
/// @{
/**
* Constructor - forces exact evaluation
*/
NonlinearEquality(Key j, const T& feasible,
const CompareFunction &_compare = std::bind(traits<T>::Equals,
std::placeholders::_1, std::placeholders::_2, 1e-9)) :
Base(noiseModel::Constrained::All(traits<T>::GetDimension(feasible)),
j), feasible_(feasible), allow_error_(false), error_gain_(0.0), //
compare_(_compare) {
}
/**
* Constructor - allows inexact evaluation
*/
NonlinearEquality(Key j, const T& feasible, double error_gain,
const CompareFunction &_compare = std::bind(traits<T>::Equals,
std::placeholders::_1, std::placeholders::_2, 1e-9)) :
Base(noiseModel::Constrained::All(traits<T>::GetDimension(feasible)),
j), feasible_(feasible), allow_error_(true), error_gain_(error_gain), //
compare_(_compare) {
}
/// @}
/// @name Testable
/// @{
void print(const std::string& s = "",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
std::cout << (s.empty() ? s : s + " ") << "Constraint: on ["
<< keyFormatter(this->key()) << "]\n";
traits<VALUE>::Print(feasible_, "Feasible Point:\n");
std::cout << "Variable Dimension: " << traits<T>::GetDimension(feasible_)
<< std::endl;
}
/** Check if two factors are equal */
bool equals(const NonlinearFactor& f, double tol = 1e-9) const override {
const This* e = dynamic_cast<const This*>(&f);
return e && Base::equals(f) && traits<T>::Equals(feasible_,e->feasible_, tol)
&& std::abs(error_gain_ - e->error_gain_) < tol;
}
/// @}
/// @name Standard Interface
/// @{
/// Actual error function calculation
double error(const Values& c) const override {
const T& xj = c.at<T>(this->key());
Vector e = this->unwhitenedError(c);
if (allow_error_ || !compare_(xj, feasible_)) {
return error_gain_ * dot(e, e);
} else {
return 0.0;
}
}
/// Error function
Vector evaluateError(const T& xj, OptionalMatrixType H) const override {
const size_t nj = traits<T>::GetDimension(feasible_);
if (allow_error_) {
if (H)
*H = Matrix::Identity(nj,nj); // FIXME: this is not the right linearization for nonlinear compare
return traits<T>::Local(xj,feasible_);
} else if (compare_(feasible_, xj)) {
if (H)
*H = Matrix::Identity(nj,nj);
return Vector::Zero(nj); // set error to zero if equal
} else {
if (H)
throw std::invalid_argument(
"Linearization point not feasible for "
+ DefaultKeyFormatter(this->key()) + "!");
return Vector::Constant(nj, std::numeric_limits<double>::infinity()); // set error to infinity if not equal
}
}
/// Linearize is over-written, because base linearization tries to whiten
GaussianFactor::shared_ptr linearize(const Values& x) const override {
const T& xj = x.at<T>(this->key());
Matrix A;
Vector b = evaluateError(xj, A);
SharedDiagonal model = noiseModel::Constrained::All(b.size());
return GaussianFactor::shared_ptr(
new JacobianFactor(this->key(), A, b, model));
}
/// @return a deep copy of this factor
gtsam::NonlinearFactor::shared_ptr clone() const override {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
}
/// @}
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
private:
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
// NoiseModelFactor1 instead of NoiseModelFactorN for backward compatibility
ar
& boost::serialization::make_nvp("NoiseModelFactor1",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(feasible_);
ar & BOOST_SERIALIZATION_NVP(allow_error_);
ar & BOOST_SERIALIZATION_NVP(error_gain_);
}
};
// \class NonlinearEquality
template <typename VALUE>
struct traits<NonlinearEquality<VALUE>> : Testable<NonlinearEquality<VALUE>> {};
/* ************************************************************************* */
/**
* Simple unary equality constraint - fixes a value for a variable
*/
template<class VALUE>
class NonlinearEquality1: public NoiseModelFactorN<VALUE> {
public:
typedef VALUE X;
using NoiseModelFactor1<VALUE>::evaluateError;
protected:
typedef NoiseModelFactorN<VALUE> Base;
typedef NonlinearEquality1<VALUE> This;
/// Default constructor to allow for serialization
NonlinearEquality1() {
}
X value_; /// fixed value for variable
GTSAM_CONCEPT_MANIFOLD_TYPE(X)
GTSAM_CONCEPT_TESTABLE_TYPE(X)
public:
typedef boost::shared_ptr<NonlinearEquality1<VALUE> > shared_ptr;
/**
* Constructor
* @param value feasible value that values(key) shouild be equal to
* @param key the key for the unknown variable to be constrained
* @param mu a parameter which really turns this into a strong prior
*/
NonlinearEquality1(const X& value, Key key, double mu = 1000.0)
: Base(noiseModel::Constrained::All(traits<X>::GetDimension(value),
std::abs(mu)),
key),
value_(value) {}
~NonlinearEquality1() override {
}
/// @return a deep copy of this factor
gtsam::NonlinearFactor::shared_ptr clone() const override {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
}
/// g(x) with optional derivative
Vector evaluateError(const X& x1, OptionalMatrixType H) const override {
if (H)
(*H) = Matrix::Identity(traits<X>::GetDimension(x1),traits<X>::GetDimension(x1));
// manifold equivalent of h(x)-z -> log(z,h(x))
return traits<X>::Local(value_,x1);
}
/// Print
void print(const std::string& s = "",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
std::cout << s << ": NonlinearEquality1(" << keyFormatter(this->key())
<< ")," << "\n";
this->noiseModel_->print();
traits<X>::Print(value_, "Value");
}
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
private:
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
// NoiseModelFactor1 instead of NoiseModelFactorN for backward compatibility
ar
& boost::serialization::make_nvp("NoiseModelFactor1",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(value_);
}
};
// \NonlinearEquality1
template <typename VALUE>
struct traits<NonlinearEquality1<VALUE> >
: Testable<NonlinearEquality1<VALUE> > {};
/* ************************************************************************* */
/**
* Simple binary equality constraint - this constraint forces two variables to
* be the same.
*/
template <class T>
class NonlinearEquality2 : public NoiseModelFactorN<T, T> {
protected:
using Base = NoiseModelFactorN<T, T>;
using This = NonlinearEquality2<T>;
GTSAM_CONCEPT_MANIFOLD_TYPE(T)
/// Default constructor to allow for serialization
NonlinearEquality2() {}
public:
typedef boost::shared_ptr<NonlinearEquality2<T>> shared_ptr;
using Base::evaluateError;
/**
* Constructor
* @param key1 the key for the first unknown variable to be constrained
* @param key2 the key for the second unknown variable to be constrained
* @param mu a parameter which really turns this into a strong prior
*/
NonlinearEquality2(Key key1, Key key2, double mu = 1e4)
: Base(noiseModel::Constrained::All(traits<T>::dimension, std::abs(mu)),
key1, key2) {}
~NonlinearEquality2() override {}
/// @return a deep copy of this factor
gtsam::NonlinearFactor::shared_ptr clone() const override {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
}
/// g(x) with optional derivative2
Vector evaluateError(
const T& x1, const T& x2, OptionalMatrixType H1, OptionalMatrixType H2) const override {
static const size_t p = traits<T>::dimension;
if (H1) *H1 = -Matrix::Identity(p, p);
if (H2) *H2 = Matrix::Identity(p, p);
return traits<T>::Local(x1, x2);
}
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
private:
/// Serialization function
friend class boost::serialization::access;
template <class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
// NoiseModelFactor2 instead of NoiseModelFactorN for backward compatibility
ar& boost::serialization::make_nvp(
"NoiseModelFactor2", boost::serialization::base_object<Base>(*this));
}
};
// \NonlinearEquality2
template <typename VALUE>
struct traits<NonlinearEquality2<VALUE>> : Testable<NonlinearEquality2<VALUE>> {
};
}// namespace gtsam