gtsam/examples/Hybrid_City10000.cpp

306 lines
10 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Hybrid_City10000.cpp
* @brief Example of using hybrid estimation
* with multiple odometry measurements.
* @author Varun Agrawal
* @date January 22, 2025
*/
#include <gtsam/geometry/Pose2.h>
#include <gtsam/hybrid/HybridNonlinearFactor.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/HybridSmoother.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/dataset.h>
#include <time.h>
#include <boost/algorithm/string/classification.hpp>
#include <boost/algorithm/string/split.hpp>
#include <fstream>
#include <string>
#include <vector>
using namespace std;
using namespace gtsam;
using namespace boost::algorithm;
using symbol_shorthand::L;
using symbol_shorthand::M;
using symbol_shorthand::X;
const size_t kMaxLoopCount = 3000; // Example default value
auto kPriorNoiseModel = noiseModel::Diagonal::Sigmas(
(Vector(3) << 0.0001, 0.0001, 0.0001).finished());
auto kPoseNoiseModel = noiseModel::Diagonal::Sigmas(
(Vector(3) << 1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0).finished());
// Experiment Class
class Experiment {
private:
std::string filename_;
HybridSmoother smoother_;
HybridNonlinearFactorGraph graph_;
Values initial_;
Values result_;
/**
* @brief Write the result of optimization to file.
*
* @param result The Values object with the final result.
* @param num_poses The number of poses to write to the file.
* @param filename The file name to save the result to.
*/
void writeResult(const Values& result, size_t numPoses,
const std::string& filename = "Hybrid_city10000.txt") {
ofstream outfile;
outfile.open(filename);
for (size_t i = 0; i < numPoses; ++i) {
Pose2 outPose = result.at<Pose2>(X(i));
outfile << outPose.x() << " " << outPose.y() << " " << outPose.theta()
<< std::endl;
}
outfile.close();
std::cout << "Output written to " << filename << std::endl;
}
/**
* @brief Create a hybrid loop closure factor where
* 0 - loose noise model and 1 - loop noise model.
*/
HybridNonlinearFactor hybridLoopClosureFactor(size_t loopCounter, size_t keyS,
size_t keyT,
const Pose2& measurement) {
DiscreteKey l(L(loopCounter), 2);
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
X(keyS), X(keyT), measurement,
noiseModel::Diagonal::Sigmas(Vector3::Ones() * 10));
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
X(keyS), X(keyT), measurement, kPoseNoiseModel);
std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
HybridNonlinearFactor mixtureFactor(l, factors);
return mixtureFactor;
}
/// @brief Create hybrid odometry factor with discrete measurement choices.
HybridNonlinearFactor hybridOdometryFactor(
size_t numMeasurements, size_t keyS, size_t keyT, const DiscreteKey& m,
const std::vector<Pose2>& poseArray,
const SharedNoiseModel& poseNoiseModel) {
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
X(keyS), X(keyT), poseArray[0], poseNoiseModel);
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
X(keyS), X(keyT), poseArray[1], poseNoiseModel);
std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
HybridNonlinearFactor mixtureFactor(m, factors);
return mixtureFactor;
}
/// @brief Perform smoother update and optimize the graph.
void smootherUpdate(HybridSmoother& smoother,
HybridNonlinearFactorGraph& graph, const Values& initial,
size_t maxNrHypotheses, Values* result) {
HybridGaussianFactorGraph linearized = *graph.linearize(initial);
smoother.update(linearized, maxNrHypotheses);
graph.resize(0);
HybridValues delta = smoother.hybridBayesNet().optimize();
result->insert_or_assign(initial.retract(delta.continuous()));
}
public:
/// Construct with filename of experiment to run
explicit Experiment(const std::string& filename)
: filename_(filename), smoother_(0.99) {}
/// @brief Run the main experiment with a given maxLoopCount.
void run(size_t maxLoopCount) {
// Prepare reading
ifstream in(filename_);
if (!in.is_open()) {
cerr << "Failed to open file: " << filename_ << endl;
return;
}
// Initialize local variables
size_t discreteCount = 0, index = 0;
size_t loopCount = 0;
size_t nrHybridFactors = 0; // for demonstration; never incremented below
std::list<double> timeList;
// We'll reuse the smoother_, graph_, initial_, result_ from the class
size_t maxNrHypotheses = 3;
// Set up initial prior
double x = 0.0;
double y = 0.0;
double rad = 0.0;
Pose2 priorPose(x, y, rad);
initial_.insert(X(0), priorPose);
graph_.push_back(PriorFactor<Pose2>(X(0), priorPose, kPriorNoiseModel));
// Initial update
clock_t beforeUpdate = clock();
smootherUpdate(smoother_, graph_, initial_, maxNrHypotheses, &result_);
clock_t afterUpdate = clock();
std::vector<std::pair<size_t, double>> smootherUpdateTimes;
smootherUpdateTimes.push_back({index, afterUpdate - beforeUpdate});
// Start main loop
size_t keyS = 0, keyT = 0;
clock_t startTime = clock();
std::string line;
while (getline(in, line) && index < maxLoopCount) {
std::vector<std::string> parts;
split(parts, line, is_any_of(" "));
keyS = stoi(parts[1]);
keyT = stoi(parts[3]);
int numMeasurements = stoi(parts[5]);
std::vector<Pose2> poseArray(numMeasurements);
for (int i = 0; i < numMeasurements; ++i) {
x = stod(parts[6 + 3 * i]);
y = stod(parts[7 + 3 * i]);
rad = stod(parts[8 + 3 * i]);
poseArray[i] = Pose2(x, y, rad);
}
// Flag to decide whether to run smoother update
bool doSmootherUpdate = false;
// Take the first one as the initial estimate
Pose2 odomPose = poseArray[0];
if (keyS == keyT - 1) {
// Odometry factor
if (numMeasurements > 1) {
// Add hybrid factor
DiscreteKey m(M(discreteCount), numMeasurements);
HybridNonlinearFactor mixtureFactor = hybridOdometryFactor(
numMeasurements, keyS, keyT, m, poseArray, kPoseNoiseModel);
graph_.push_back(mixtureFactor);
discreteCount++;
doSmootherUpdate = true;
} else {
graph_.add(BetweenFactor<Pose2>(X(keyS), X(keyT), odomPose,
kPoseNoiseModel));
}
// Insert next pose initial guess
initial_.insert(X(keyT), initial_.at<Pose2>(X(keyS)) * odomPose);
} else {
// Loop closure
HybridNonlinearFactor loopFactor =
hybridLoopClosureFactor(loopCount, keyS, keyT, odomPose);
graph_.add(loopFactor);
doSmootherUpdate = true;
loopCount++;
}
if (doSmootherUpdate) {
gttic_(SmootherUpdate);
beforeUpdate = clock();
smootherUpdate(smoother_, graph_, initial_, maxNrHypotheses, &result_);
afterUpdate = clock();
smootherUpdateTimes.push_back({index, afterUpdate - beforeUpdate});
gttoc_(SmootherUpdate);
}
// Record timing for odometry edges only
if (keyS == keyT - 1) {
clock_t curTime = clock();
timeList.push_back(curTime - startTime);
}
// Print some status every 100 steps
if (index % 100 == 0) {
std::cout << "Index: " << index << std::endl;
if (!timeList.empty()) {
std::cout << "Acc_time: " << timeList.back() / CLOCKS_PER_SEC
<< " seconds" << std::endl;
// delta.discrete().print("The Discrete Assignment");
tictoc_finishedIteration_();
tictoc_print_();
}
}
index++;
}
// Final update
beforeUpdate = clock();
smootherUpdate(smoother_, graph_, initial_, maxNrHypotheses, &result_);
afterUpdate = clock();
smootherUpdateTimes.push_back({index, afterUpdate - beforeUpdate});
// Final optimize
gttic_(HybridSmootherOptimize);
HybridValues delta = smoother_.hybridBayesNet().optimize();
gttoc_(HybridSmootherOptimize);
result_.insert_or_assign(initial_.retract(delta.continuous()));
std::cout << "Final error: " << smoother_.hybridBayesNet().error(delta)
<< std::endl;
clock_t endTime = clock();
clock_t totalTime = endTime - startTime;
std::cout << "Total time: " << totalTime / CLOCKS_PER_SEC << " seconds"
<< std::endl;
// Write results to file
writeResult(result_, keyT + 1, "Hybrid_City10000.txt");
// TODO Write to file
// for (size_t i = 0; i < smoother_update_times.size(); i++) {
// auto p = smoother_update_times.at(i);
// std::cout << p.first << ", " << p.second / CLOCKS_PER_SEC <<
// std::endl;
// }
// Write timing info to file
ofstream outfileTime;
std::string timeFileName = "Hybrid_City10000_time.txt";
outfileTime.open(timeFileName);
for (auto accTime : timeList) {
outfileTime << accTime << std::endl;
}
outfileTime.close();
std::cout << "Output " << timeFileName << " file." << std::endl;
// Just to show usage of nrHybridFactors
std::cout << nrHybridFactors << std::endl;
}
};
/* ************************************************************************* */
int main() {
Experiment experiment(findExampleDataFile("T1_city10000_04.txt"));
// Experiment experiment("../data/mh_T1_city10000_04.txt"); //Type #1 only
// Experiment experiment("../data/mh_T3b_city10000_10.txt"); //Type #3 only
// Experiment experiment("../data/mh_T1_T3_city10000_04.txt"); //Type #1 + Type #3
// Run the experiment
experiment.run(kMaxLoopCount);
return 0;
}