gtsam/gtsam/linear/GaussianConditionalUnordere...

194 lines
7.3 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file GaussianConditional.cpp
* @brief Conditional Gaussian Base class
* @author Christian Potthast
*/
#include <string.h>
#include <boost/format.hpp>
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-variable"
#endif
#include <boost/lambda/lambda.hpp>
#include <boost/lambda/bind.hpp>
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
#include <gtsam/linear/linearExceptions.h>
#include <gtsam/linear/GaussianConditionalUnordered.h>
#include <gtsam/linear/VectorValuesUnordered.h>
using namespace std;
namespace gtsam {
/* ************************************************************************* */
GaussianConditionalUnordered::GaussianConditionalUnordered(
Key key, const Vector& d, const Matrix& R, const SharedDiagonal& sigmas) :
BaseFactor(key, R, d, sigmas), BaseConditional(1) {}
/* ************************************************************************* */
GaussianConditionalUnordered::GaussianConditionalUnordered(
Key key, const Vector& d, const Matrix& R,
Key name1, const Matrix& S, const SharedDiagonal& sigmas) :
BaseFactor(key, R, name1, S, d, sigmas), BaseConditional(1) {}
/* ************************************************************************* */
GaussianConditionalUnordered::GaussianConditionalUnordered(
Key key, const Vector& d, const Matrix& R,
Key name1, const Matrix& S, Key name2, const Matrix& T, const SharedDiagonal& sigmas) :
BaseFactor(key, R, name1, S, name2, T, d, sigmas), BaseConditional(1) {}
/* ************************************************************************* */
void GaussianConditionalUnordered::print(const string &s, const IndexFormatter& formatter) const
{
cout << s << " Conditional density ";
for(const_iterator it = beginFrontals(); it != endFrontals(); ++it) {
cout << (boost::format("[%1%]")%(formatter(*it))).str() << " ";
}
cout << endl;
cout << formatMatrixIndented(" R = ", get_R()) << endl;
for(const_iterator it = beginParents() ; it != endParents() ; ++it ) {
cout << formatMatrixIndented((boost::format(" S[%1%] = ")%(formatter(*it))).str(), getA(it))
<< endl;
}
cout << formatMatrixIndented(" d = ", getb(), true) << "\n";
if(model_)
model_->print(" Noise model: ");
else
cout << " No noise model" << endl;
}
/* ************************************************************************* */
bool GaussianConditionalUnordered::equals(const GaussianConditionalUnordered &c, double tol) const {
// check if the size of the parents_ map is the same
if (parents().size() != c.parents().size())
return false;
// check if R_ and d_ are linear independent
for (DenseIndex i=0; i<Ab_.rows(); i++) {
list<Vector> rows1; rows1.push_back(Vector(get_R().row(i)));
list<Vector> rows2; rows2.push_back(Vector(c.get_R().row(i)));
// check if the matrices are the same
// iterate over the parents_ map
for (const_iterator it = beginParents(); it != endParents(); ++it) {
const_iterator it2 = c.beginParents() + (it-beginParents());
if(*it != *(it2))
return false;
rows1.push_back(row(getA(it), i));
rows2.push_back(row(c.getA(it2), i));
}
Vector row1 = concatVectors(rows1);
Vector row2 = concatVectors(rows2);
if (!linear_dependent(row1, row2, tol))
return false;
}
// check if sigmas are equal
if ((model_ && !c.model_) || (!model_ && c.model_)
|| (model_ && c.model_ && !model_->equals(*c.model_, tol)))
return false;
return true;
}
/* ************************************************************************* */
VectorValuesUnordered GaussianConditionalUnordered::solve(const VectorValuesUnordered& x) const
{
// Solve matrix
Vector xS = x.vector(vector<Key>(beginParents(), endParents()));
xS = getb() - get_S() * xS;
Vector soln = get_R().triangularView<Eigen::Upper>().solve(xS);
// Check for indeterminant solution
if(soln.unaryExpr(!boost::lambda::bind(ptr_fun(isfinite<double>), boost::lambda::_1)).any())
throw IndeterminantLinearSystemException(keys().front());
// Insert solution into a VectorValues
VectorValuesUnordered result;
DenseIndex vectorPosition = 0;
for(const_iterator frontal = beginFrontals(); frontal != endFrontals(); ++frontal) {
result.insert(*frontal, soln.segment(vectorPosition, getDim(frontal)));
vectorPosition += getDim(frontal);
}
return result;
}
/* ************************************************************************* */
VectorValuesUnordered GaussianConditionalUnordered::solveOtherRHS(
const VectorValuesUnordered& parents, const VectorValuesUnordered& rhs) const
{
Vector xS = parents.vector(vector<Key>(beginParents(), endParents()));
const Vector rhsR = rhs.vector(vector<Key>(beginFrontals(), endFrontals()));
xS = rhsR - get_S() * xS;
Vector soln = get_R().triangularView<Eigen::Upper>().solve(xS);
// Scale by sigmas
if(model_)
soln.array() *= model_->sigmas().array();
// Insert solution into a VectorValues
VectorValuesUnordered result;
DenseIndex vectorPosition = 0;
for(const_iterator frontal = beginFrontals(); frontal != endFrontals(); ++frontal) {
result.insert(*frontal, soln.segment(vectorPosition, getDim(frontal)));
vectorPosition += getDim(frontal);
}
return result;
}
/* ************************************************************************* */
void GaussianConditionalUnordered::solveTransposeInPlace(VectorValuesUnordered& gy) const
{
Vector frontalVec = gy.vector(vector<Key>(beginFrontals(), endFrontals()));
frontalVec = gtsam::backSubstituteUpper(frontalVec, Matrix(get_R()));
// Check for indeterminant solution
if(frontalVec.unaryExpr(!boost::lambda::bind(ptr_fun(isfinite<double>), boost::lambda::_1)).any())
throw IndeterminantLinearSystemException(this->keys().front());
for (const_iterator it = beginParents(); it!= endParents(); it++)
gtsam::transposeMultiplyAdd(-1.0, Matrix(getA(it)), frontalVec, gy[*it]);
// Scale by sigmas
if(model_)
frontalVec.array() *= model_->sigmas().array();
// Write frontal solution into a VectorValues
DenseIndex vectorPosition = 0;
for(const_iterator frontal = beginFrontals(); frontal != endFrontals(); ++frontal) {
gy[*frontal] = frontalVec.segment(vectorPosition, getDim(frontal));
vectorPosition += getDim(frontal);
}
}
/* ************************************************************************* */
void GaussianConditionalUnordered::scaleFrontalsBySigma(VectorValuesUnordered& gy) const
{
DenseIndex vectorPosition = 0;
for(const_iterator frontal = beginFrontals(); frontal != endFrontals(); ++frontal) {
gy[*frontal].array() *= model_->sigmas().segment(vectorPosition, getDim(frontal)).array();
vectorPosition += getDim(frontal);
}
}
}