gtsam/tests/testNonlinearFactorGraph.cpp

158 lines
5.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testNonlinearFactorGraph.cpp
* @brief Unit tests for Non-Linear Factor Graph
* @brief testNonlinearFactorGraph
* @author Carlos Nieto
* @author Christian Potthast
*/
/*STL/C++*/
#include <iostream>
using namespace std;
#include <boost/assign/std/list.hpp>
#include <boost/assign/std/set.hpp>
using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/Matrix.h>
#include <tests/smallExample.h>
#include <gtsam/inference/FactorGraph.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Symbol.h>
using namespace gtsam;
using namespace example;
using symbol_shorthand::X;
using symbol_shorthand::L;
/* ************************************************************************* */
TEST( Graph, equals )
{
Graph fg = createNonlinearFactorGraph();
Graph fg2 = createNonlinearFactorGraph();
CHECK( fg.equals(fg2) );
}
/* ************************************************************************* */
TEST( Graph, error )
{
Graph fg = createNonlinearFactorGraph();
Values c1 = createValues();
double actual1 = fg.error(c1);
DOUBLES_EQUAL( 0.0, actual1, 1e-9 );
Values c2 = createNoisyValues();
double actual2 = fg.error(c2);
DOUBLES_EQUAL( 5.625, actual2, 1e-9 );
}
/* ************************************************************************* */
TEST( Graph, keys )
{
Graph fg = createNonlinearFactorGraph();
FastSet<Key> actual = fg.keys();
LONGS_EQUAL(3, actual.size());
FastSet<Key>::const_iterator it = actual.begin();
LONGS_EQUAL(L(1), *(it++));
LONGS_EQUAL(X(1), *(it++));
LONGS_EQUAL(X(2), *(it++));
}
/* ************************************************************************* */
TEST( Graph, GET_ORDERING)
{
// OrderingOrdered expected; expected += "x1","l1","x2"; // For starting with x1,x2,l1
OrderingOrdered expected; expected += L(1), X(2), X(1); // For starting with l1,x1,x2
Graph nlfg = createNonlinearFactorGraph();
SymbolicFactorGraphOrdered::shared_ptr symbolic;
OrderingOrdered::shared_ptr ordering;
boost::tie(symbolic, ordering) = nlfg.symbolic(createNoisyValues());
OrderingOrdered actual = *nlfg.orderingCOLAMD(createNoisyValues());
EXPECT(assert_equal(expected,actual));
// Constrained ordering - put x2 at the end
std::map<Key, int> constraints;
constraints[X(2)] = 1;
OrderingOrdered actualConstrained = *nlfg.orderingCOLAMDConstrained(createNoisyValues(), constraints);
OrderingOrdered expectedConstrained; expectedConstrained += L(1), X(1), X(2);
EXPECT(assert_equal(expectedConstrained, actualConstrained));
}
/* ************************************************************************* */
TEST( Graph, probPrime )
{
Graph fg = createNonlinearFactorGraph();
Values cfg = createValues();
// evaluate the probability of the factor graph
double actual = fg.probPrime(cfg);
double expected = 1.0;
DOUBLES_EQUAL(expected,actual,0);
}
/* ************************************************************************* */
TEST( Graph, linearize )
{
Graph fg = createNonlinearFactorGraph();
Values initial = createNoisyValues();
boost::shared_ptr<FactorGraphOrdered<GaussianFactorOrdered> > linearized = fg.linearize(initial, *initial.orderingArbitrary());
FactorGraphOrdered<GaussianFactorOrdered> expected = createGaussianFactorGraph(*initial.orderingArbitrary());
CHECK(assert_equal(expected,*linearized)); // Needs correct linearizations
}
/* ************************************************************************* */
TEST( Graph, clone )
{
Graph fg = createNonlinearFactorGraph();
Graph actClone = fg.clone();
EXPECT(assert_equal(fg, actClone));
for (size_t i=0; i<fg.size(); ++i)
EXPECT(fg[i] != actClone[i]);
}
/* ************************************************************************* */
TEST( Graph, rekey )
{
Graph init = createNonlinearFactorGraph();
map<Key,Key> rekey_mapping;
rekey_mapping.insert(make_pair(L(1), L(4)));
Graph actRekey = init.rekey(rekey_mapping);
// ensure deep clone
LONGS_EQUAL(init.size(), actRekey.size());
for (size_t i=0; i<init.size(); ++i)
EXPECT(init[i] != actRekey[i]);
Graph expRekey;
// original measurements
expRekey.push_back(init[0]);
expRekey.push_back(init[1]);
// updated measurements
Point2 z3(0, -1), z4(-1.5, -1.);
SharedDiagonal sigma0_2 = noiseModel::Isotropic::Sigma(2,0.2);
expRekey.add(simulated2D::Measurement(z3, sigma0_2, X(1), L(4)));
expRekey.add(simulated2D::Measurement(z4, sigma0_2, X(2), L(4)));
EXPECT(assert_equal(expRekey, actRekey));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */