149 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			149 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file PartialPriorFactor.h
 | 
						|
 * @brief A simple prior factor that allows for setting a prior only on a part of linear parameters
 | 
						|
 * @author Alex Cunningham
 | 
						|
 */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <gtsam/nonlinear/NonlinearFactor.h>
 | 
						|
#include <gtsam/base/Lie.h>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
  /**
 | 
						|
   * A class for a soft partial prior on any Lie type, with a mask over Expmap
 | 
						|
   * parameters. Note that this will use Logmap() to find a tangent space parameterization
 | 
						|
   * for the variable attached, so this may fail for highly nonlinear manifolds.
 | 
						|
   *
 | 
						|
   * The prior vector used in this factor is stored in compressed form, such that
 | 
						|
   * it only contains values for measurements that are to be compared, and they are in
 | 
						|
   * the same order as VALUE::Logmap().  The mask will determine which components to extract
 | 
						|
   * in the error function.
 | 
						|
   *
 | 
						|
   * For practical use, it would be good to subclass this factor and have the class type
 | 
						|
   * construct the mask.
 | 
						|
   * @tparam VALUE is the type of variable the prior effects
 | 
						|
   */
 | 
						|
  template<class VALUE>
 | 
						|
  class PartialPriorFactor: public NoiseModelFactor1<VALUE> {
 | 
						|
 | 
						|
  public:
 | 
						|
    typedef VALUE T;
 | 
						|
 | 
						|
  protected:
 | 
						|
 | 
						|
    // Concept checks on the variable type - currently requires Lie
 | 
						|
    GTSAM_CONCEPT_LIE_TYPE(VALUE)
 | 
						|
 | 
						|
    typedef NoiseModelFactor1<VALUE> Base;
 | 
						|
    typedef PartialPriorFactor<VALUE> This;
 | 
						|
 | 
						|
    Vector prior_;             ///< measurement on tangent space parameters, in compressed form
 | 
						|
    std::vector<size_t> mask_; ///< indices of values to constrain in compressed prior vector
 | 
						|
    Matrix H_;                  ///< Constant Jacobian - computed at creation
 | 
						|
 | 
						|
    /** default constructor - only use for serialization */
 | 
						|
    PartialPriorFactor() {}
 | 
						|
 | 
						|
    /**
 | 
						|
     * constructor with just minimum requirements for a factor - allows more
 | 
						|
     * computation in the constructor.  This should only be used by subclasses
 | 
						|
     */
 | 
						|
    PartialPriorFactor(Key key, const SharedNoiseModel& model)
 | 
						|
      : Base(model, key) {}
 | 
						|
 | 
						|
  public:
 | 
						|
 | 
						|
    virtual ~PartialPriorFactor() {}
 | 
						|
 | 
						|
    /** Single Element Constructor: acts on a single parameter specified by idx */
 | 
						|
    PartialPriorFactor(Key key, size_t idx, double prior, const SharedNoiseModel& model) :
 | 
						|
      Base(model, key), prior_((Vector(1) << prior)), mask_(1, idx), H_(zeros(1, T::Dim())) {
 | 
						|
      assert(model->dim() == 1);
 | 
						|
      this->fillH();
 | 
						|
    }
 | 
						|
 | 
						|
    /** Indices Constructor: specify the mask with a set of indices */
 | 
						|
    PartialPriorFactor(Key key, const std::vector<size_t>& mask, const Vector& prior,
 | 
						|
        const SharedNoiseModel& model) :
 | 
						|
      Base(model, key), prior_(prior), mask_(mask), H_(zeros(mask.size(), T::Dim())) {
 | 
						|
      assert((size_t)prior_.size() == mask.size());
 | 
						|
      assert(model->dim() == (size_t) prior.size());
 | 
						|
      this->fillH();
 | 
						|
    }
 | 
						|
 | 
						|
    /// @return a deep copy of this factor
 | 
						|
    virtual gtsam::NonlinearFactor::shared_ptr clone() const {
 | 
						|
      return boost::static_pointer_cast<gtsam::NonlinearFactor>(
 | 
						|
          gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
 | 
						|
 | 
						|
    /** implement functions needed for Testable */
 | 
						|
 | 
						|
    /** print */
 | 
						|
    virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
 | 
						|
      Base::print(s, keyFormatter);
 | 
						|
      gtsam::print(prior_, "prior");
 | 
						|
    }
 | 
						|
 | 
						|
    /** equals */
 | 
						|
    virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
 | 
						|
      const This *e = dynamic_cast<const This*> (&expected);
 | 
						|
      return e != NULL && Base::equals(*e, tol) &&
 | 
						|
          gtsam::equal_with_abs_tol(this->prior_, e->prior_, tol) &&
 | 
						|
          this->mask_ == e->mask_;
 | 
						|
    }
 | 
						|
 | 
						|
    /** implement functions needed to derive from Factor */
 | 
						|
 | 
						|
    /** vector of errors */
 | 
						|
    Vector evaluateError(const T& p, boost::optional<Matrix&> H = boost::none) const {
 | 
						|
      if (H) (*H) = H_;
 | 
						|
      // FIXME: this was originally the generic retraction - may not produce same results
 | 
						|
      Vector full_logmap = T::Logmap(p);
 | 
						|
//      Vector full_logmap = T::identity().localCoordinates(p); // Alternate implementation
 | 
						|
      Vector masked_logmap = zero(this->dim());
 | 
						|
      for (size_t i=0; i<mask_.size(); ++i)
 | 
						|
        masked_logmap(i) = full_logmap(mask_[i]);
 | 
						|
      return masked_logmap - prior_;
 | 
						|
    }
 | 
						|
 | 
						|
    // access
 | 
						|
    const Vector& prior() const { return prior_; }
 | 
						|
    const std::vector<bool>& mask() const { return  mask_; }
 | 
						|
    const Matrix& H() const { return H_; }
 | 
						|
 | 
						|
  protected:
 | 
						|
 | 
						|
    /** Constructs the jacobian matrix in place */
 | 
						|
    void fillH() {
 | 
						|
      for (size_t i=0; i<mask_.size(); ++i)
 | 
						|
        H_(i, mask_[i]) = 1.0;
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /** Serialization function */
 | 
						|
    friend class boost::serialization::access;
 | 
						|
    template<class ARCHIVE>
 | 
						|
    void serialize(ARCHIVE & ar, const unsigned int version) {
 | 
						|
      ar & boost::serialization::make_nvp("NoiseModelFactor1",
 | 
						|
          boost::serialization::base_object<Base>(*this));
 | 
						|
      ar & BOOST_SERIALIZATION_NVP(prior_);
 | 
						|
      ar & BOOST_SERIALIZATION_NVP(mask_);
 | 
						|
      ar & BOOST_SERIALIZATION_NVP(H_);
 | 
						|
    }
 | 
						|
  }; // \class PartialPriorFactor
 | 
						|
 | 
						|
} /// namespace gtsam
 |