gtsam/matlab/examples/VisualISAMInitialize.m

42 lines
1.5 KiB
Matlab

function [ isam, results ] = VisualISAMInitialize( data, reorderInterval )
%VISUALISAMINITIALIZE Initialize the first two poses and update ISAM
if (nargin<2), reorderInterval = 1; end
isam = visualSLAMISAM(reorderInterval);
%% Add new factors
newFactors = visualSLAMGraph;
newFactors.addPosePrior(symbol('x',1), data.cameras{1}.pose, data.posePriorNoise);
newFactors.addPointPrior(symbol('l',1), data.points{1}, data.pointPriorNoise);
odometry = data.cameras{1}.pose().between(data.cameras{2}.pose());
newFactors.addOdometry(symbol('x',1), symbol('x',2), odometry, data.odometryNoise);
for i=1:2
for j=1:size(data.points,2)
zij = data.cameras{i}.project(data.points{j});
newFactors.addMeasurement(zij, data.measurementNoise, symbol('x',i), symbol('l',j), data.K);
end
end
%% Initial estimats for new variables
initials = visualSLAMValues;
initials.insertPose(symbol('x',1), data.cameras{1}.pose);
initials.insertPose(symbol('x',2), data.cameras{2}.pose);
for j=1:size(data.points,2)
initials.insertPoint(symbol('l',j), data.points{j});
end
%% Update ISAM
isam.update(newFactors, initials);
results.frame_i = 2;
results.estimates = isam.estimate();
for i=1:2
results.Pposes{i} = isam.marginalCovariance(symbol('x',i));
end
for j=1:size(data.points,2)
results.Ppoints{j} = isam.marginalCovariance(symbol('l',j));
end
end