295 lines
9.8 KiB
C++
295 lines
9.8 KiB
C++
/*
|
|
* @file EssentialMatrixFactor.cpp
|
|
* @brief EssentialMatrixFactor class
|
|
* @author Frank Dellaert
|
|
* @date December 17, 2013
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/nonlinear/NonlinearFactor.h>
|
|
#include <gtsam/geometry/EssentialMatrix.h>
|
|
#include <gtsam/geometry/PinholeCamera.h>
|
|
#include <iostream>
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* Factor that evaluates epipolar error p'Ep for given essential matrix
|
|
*/
|
|
class EssentialMatrixFactor: public NoiseModelFactor1<EssentialMatrix> {
|
|
|
|
Vector3 vA_, vB_; ///< Homogeneous versions, in ideal coordinates
|
|
|
|
typedef NoiseModelFactor1<EssentialMatrix> Base;
|
|
typedef EssentialMatrixFactor This;
|
|
|
|
public:
|
|
|
|
/**
|
|
* Constructor
|
|
* @param key Essential Matrix variable key
|
|
* @param pA point in first camera, in calibrated coordinates
|
|
* @param pB point in second camera, in calibrated coordinates
|
|
* @param model noise model is about dot product in ideal, homogeneous coordinates
|
|
*/
|
|
EssentialMatrixFactor(Key key, const Point2& pA, const Point2& pB,
|
|
const SharedNoiseModel& model) :
|
|
Base(model, key) {
|
|
vA_ = EssentialMatrix::Homogeneous(pA);
|
|
vB_ = EssentialMatrix::Homogeneous(pB);
|
|
}
|
|
|
|
/**
|
|
* Constructor
|
|
* @param key Essential Matrix variable key
|
|
* @param pA point in first camera, in pixel coordinates
|
|
* @param pB point in second camera, in pixel coordinates
|
|
* @param model noise model is about dot product in ideal, homogeneous coordinates
|
|
* @param K calibration object, will be used only in constructor
|
|
*/
|
|
template<class CALIBRATION>
|
|
EssentialMatrixFactor(Key key, const Point2& pA, const Point2& pB,
|
|
const SharedNoiseModel& model, boost::shared_ptr<CALIBRATION> K) :
|
|
Base(model, key) {
|
|
assert(K);
|
|
vA_ = EssentialMatrix::Homogeneous(K->calibrate(pA));
|
|
vB_ = EssentialMatrix::Homogeneous(K->calibrate(pB));
|
|
}
|
|
|
|
/// @return a deep copy of this factor
|
|
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
|
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
|
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
|
|
}
|
|
|
|
/// print
|
|
virtual void print(const std::string& s = "",
|
|
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
|
Base::print(s);
|
|
std::cout << " EssentialMatrixFactor with measurements\n ("
|
|
<< vA_.transpose() << ")' and (" << vB_.transpose() << ")'"
|
|
<< std::endl;
|
|
}
|
|
|
|
/// vector of errors returns 1D vector
|
|
Vector evaluateError(const EssentialMatrix& E, boost::optional<Matrix&> H =
|
|
boost::none) const {
|
|
Vector error(1);
|
|
error << E.error(vA_, vB_, H);
|
|
return error;
|
|
}
|
|
|
|
public:
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
};
|
|
|
|
/**
|
|
* Binary factor that optimizes for E and inverse depth d: assumes measurement
|
|
* in image 2 is perfect, and returns re-projection error in image 1
|
|
*/
|
|
class EssentialMatrixFactor2: public NoiseModelFactor2<EssentialMatrix, double> {
|
|
|
|
Point3 dP1_; ///< 3D point corresponding to measurement in image 1
|
|
Point2 pn_; ///< Measurement in image 2, in ideal coordinates
|
|
double f_; ///< approximate conversion factor for error scaling
|
|
|
|
typedef NoiseModelFactor2<EssentialMatrix, double> Base;
|
|
typedef EssentialMatrixFactor2 This;
|
|
|
|
public:
|
|
|
|
/**
|
|
* Constructor
|
|
* @param key1 Essential Matrix variable key
|
|
* @param key2 Inverse depth variable key
|
|
* @param pA point in first camera, in calibrated coordinates
|
|
* @param pB point in second camera, in calibrated coordinates
|
|
* @param model noise model should be in pixels, as well
|
|
*/
|
|
EssentialMatrixFactor2(Key key1, Key key2, const Point2& pA, const Point2& pB,
|
|
const SharedNoiseModel& model) :
|
|
Base(model, key1, key2), dP1_(EssentialMatrix::Homogeneous(pA)), pn_(pB) {
|
|
f_ = 1.0;
|
|
}
|
|
|
|
/**
|
|
* Constructor
|
|
* @param key1 Essential Matrix variable key
|
|
* @param key2 Inverse depth variable key
|
|
* @param pA point in first camera, in pixel coordinates
|
|
* @param pB point in second camera, in pixel coordinates
|
|
* @param K calibration object, will be used only in constructor
|
|
* @param model noise model should be in pixels, as well
|
|
*/
|
|
template<class CALIBRATION>
|
|
EssentialMatrixFactor2(Key key1, Key key2, const Point2& pA, const Point2& pB,
|
|
const SharedNoiseModel& model, boost::shared_ptr<CALIBRATION> K) :
|
|
Base(model, key1, key2), dP1_(
|
|
EssentialMatrix::Homogeneous(K->calibrate(pA))), pn_(K->calibrate(pB)) {
|
|
f_ = 0.5 * (K->fx() + K->fy());
|
|
}
|
|
|
|
/// @return a deep copy of this factor
|
|
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
|
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
|
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
|
|
}
|
|
|
|
/// print
|
|
virtual void print(const std::string& s = "",
|
|
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
|
Base::print(s);
|
|
std::cout << " EssentialMatrixFactor2 with measurements\n ("
|
|
<< dP1_.transpose() << ")' and (" << pn_.transpose()
|
|
<< ")'" << std::endl;
|
|
}
|
|
|
|
/*
|
|
* Vector of errors returns 2D vector
|
|
* @param E essential matrix
|
|
* @param d inverse depth d
|
|
*/
|
|
Vector evaluateError(const EssentialMatrix& E, const double& d,
|
|
boost::optional<Matrix&> DE = boost::none, boost::optional<Matrix&> Dd =
|
|
boost::none) const {
|
|
|
|
// We have point x,y in image 1
|
|
// Given a depth Z, the corresponding 3D point P1 = Z*(x,y,1) = (x,y,1)/d
|
|
// We then convert to second camera by P2 = 1R2'*(P1-1T2)
|
|
// The homogeneous coordinates of can be written as
|
|
// 2R1*(P1-1T2) == 2R1*d*(P1-1T2) == 2R1*((x,y,1)-d*1T2)
|
|
// where we multiplied with d which yields equivalent homogeneous coordinates.
|
|
// Note that this is just the homography 2R1 for d==0
|
|
// The point d*P1 = (x,y,1) is computed in constructor as dP1_
|
|
|
|
// Project to normalized image coordinates, then uncalibrate
|
|
Point2 pn(0,0);
|
|
if (!DE && !Dd) {
|
|
|
|
Point3 _1T2 = E.direction().point3();
|
|
Point3 d1T2 = d * _1T2;
|
|
Point3 dP2 = E.rotation().unrotate(dP1_ - d1T2); // 2R1*((x,y,1)-d*1T2)
|
|
pn = PinholeBase::Project(dP2);
|
|
|
|
} else {
|
|
|
|
// Calculate derivatives. TODO if slow: optimize with Mathematica
|
|
// 3*2 3*3 3*3
|
|
Matrix D_1T2_dir, DdP2_rot, DP2_point;
|
|
|
|
Point3 _1T2 = E.direction().point3(D_1T2_dir);
|
|
Point3 d1T2 = d * _1T2;
|
|
Point3 dP2 = E.rotation().unrotate(dP1_ - d1T2, DdP2_rot, DP2_point);
|
|
|
|
Matrix23 Dpn_dP2;
|
|
pn = PinholeBase::Project(dP2, Dpn_dP2);
|
|
|
|
if (DE) {
|
|
Matrix DdP2_E(3, 5);
|
|
DdP2_E << DdP2_rot, -DP2_point * d * D_1T2_dir; // (3*3), (3*3) * (3*2)
|
|
*DE = f_ * Dpn_dP2 * DdP2_E; // (2*3) * (3*5)
|
|
}
|
|
|
|
if (Dd) // efficient backwards computation:
|
|
// (2*3) * (3*3) * (3*1)
|
|
*Dd = -f_ * (Dpn_dP2 * (DP2_point * _1T2));
|
|
|
|
}
|
|
Point2 reprojectionError = pn - pn_;
|
|
return f_ * reprojectionError;
|
|
}
|
|
|
|
public:
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
};
|
|
// EssentialMatrixFactor2
|
|
|
|
/**
|
|
* Binary factor that optimizes for E and inverse depth d: assumes measurement
|
|
* in image 2 is perfect, and returns re-projection error in image 1
|
|
* This version takes an extrinsic rotation to allow for omni-directional rigs
|
|
*/
|
|
class EssentialMatrixFactor3: public EssentialMatrixFactor2 {
|
|
|
|
typedef EssentialMatrixFactor2 Base;
|
|
typedef EssentialMatrixFactor3 This;
|
|
|
|
Rot3 cRb_; ///< Rotation from body to camera frame
|
|
|
|
public:
|
|
|
|
/**
|
|
* Constructor
|
|
* @param key1 Essential Matrix variable key
|
|
* @param key2 Inverse depth variable key
|
|
* @param pA point in first camera, in calibrated coordinates
|
|
* @param pB point in second camera, in calibrated coordinates
|
|
* @param bRc extra rotation between "body" and "camera" frame
|
|
* @param model noise model should be in calibrated coordinates, as well
|
|
*/
|
|
EssentialMatrixFactor3(Key key1, Key key2, const Point2& pA, const Point2& pB,
|
|
const Rot3& cRb, const SharedNoiseModel& model) :
|
|
EssentialMatrixFactor2(key1, key2, pA, pB, model), cRb_(cRb) {
|
|
}
|
|
|
|
/**
|
|
* Constructor
|
|
* @param key1 Essential Matrix variable key
|
|
* @param key2 Inverse depth variable key
|
|
* @param pA point in first camera, in pixel coordinates
|
|
* @param pB point in second camera, in pixel coordinates
|
|
* @param K calibration object, will be used only in constructor
|
|
* @param model noise model should be in pixels, as well
|
|
*/
|
|
template<class CALIBRATION>
|
|
EssentialMatrixFactor3(Key key1, Key key2, const Point2& pA, const Point2& pB,
|
|
const Rot3& cRb, const SharedNoiseModel& model,
|
|
boost::shared_ptr<CALIBRATION> K) :
|
|
EssentialMatrixFactor2(key1, key2, pA, pB, model, K), cRb_(cRb) {
|
|
}
|
|
|
|
/// @return a deep copy of this factor
|
|
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
|
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
|
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
|
|
}
|
|
|
|
/// print
|
|
virtual void print(const std::string& s = "",
|
|
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
|
Base::print(s);
|
|
std::cout << " EssentialMatrixFactor3 with rotation " << cRb_ << std::endl;
|
|
}
|
|
|
|
/*
|
|
* Vector of errors returns 2D vector
|
|
* @param E essential matrix
|
|
* @param d inverse depth d
|
|
*/
|
|
Vector evaluateError(const EssentialMatrix& E, const double& d,
|
|
boost::optional<Matrix&> DE = boost::none, boost::optional<Matrix&> Dd =
|
|
boost::none) const {
|
|
if (!DE) {
|
|
// Convert E from body to camera frame
|
|
EssentialMatrix cameraE = cRb_ * E;
|
|
// Evaluate error
|
|
return Base::evaluateError(cameraE, d, boost::none, Dd);
|
|
} else {
|
|
// Version with derivatives
|
|
Matrix D_e_cameraE, D_cameraE_E; // 2*5, 5*5
|
|
EssentialMatrix cameraE = E.rotate(cRb_, D_cameraE_E);
|
|
Vector e = Base::evaluateError(cameraE, d, D_e_cameraE, Dd);
|
|
*DE = D_e_cameraE * D_cameraE_E; // (2*5) * (5*5)
|
|
return e;
|
|
}
|
|
}
|
|
|
|
public:
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
};
|
|
// EssentialMatrixFactor3
|
|
|
|
}// gtsam
|
|
|