gtsam/python/gtsam/tests/test_HybridFactorGraph.py

343 lines
13 KiB
Python

"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Unit tests for Hybrid Factor Graphs.
Author: Fan Jiang, Varun Agrawal, Frank Dellaert
"""
# pylint: disable=invalid-name, no-name-in-module, no-member
import unittest
import numpy as np
from gtsam.symbol_shorthand import C, M, X, Z
from gtsam.utils.test_case import GtsamTestCase
import gtsam
from gtsam import (DiscreteConditional, DiscreteKeys, GaussianConditional,
GaussianMixture, GaussianMixtureFactor, HybridBayesNet,
HybridGaussianFactorGraph, HybridValues, JacobianFactor,
Ordering, noiseModel)
class TestHybridGaussianFactorGraph(GtsamTestCase):
"""Unit tests for HybridGaussianFactorGraph."""
def test_create(self):
"""Test construction of hybrid factor graph."""
model = noiseModel.Unit.Create(3)
dk = DiscreteKeys()
dk.push_back((C(0), 2))
jf1 = JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)), model)
jf2 = JacobianFactor(X(0), np.eye(3), np.ones((3, 1)), model)
gmf = GaussianMixtureFactor([X(0)], dk, [jf1, jf2])
hfg = HybridGaussianFactorGraph()
hfg.push_back(jf1)
hfg.push_back(jf2)
hfg.push_back(gmf)
hbn = hfg.eliminateSequential(
Ordering.ColamdConstrainedLastHybridGaussianFactorGraph(
hfg, [C(0)]))
self.assertEqual(hbn.size(), 2)
mixture = hbn.at(0).inner()
self.assertIsInstance(mixture, GaussianMixture)
self.assertEqual(len(mixture.keys()), 2)
discrete_conditional = hbn.at(hbn.size() - 1).inner()
self.assertIsInstance(discrete_conditional, DiscreteConditional)
def test_optimize(self):
"""Test construction of hybrid factor graph."""
model = noiseModel.Unit.Create(3)
dk = DiscreteKeys()
dk.push_back((C(0), 2))
jf1 = JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)), model)
jf2 = JacobianFactor(X(0), np.eye(3), np.ones((3, 1)), model)
gmf = GaussianMixtureFactor([X(0)], dk, [jf1, jf2])
hfg = HybridGaussianFactorGraph()
hfg.push_back(jf1)
hfg.push_back(jf2)
hfg.push_back(gmf)
dtf = gtsam.DecisionTreeFactor([(C(0), 2)], "0 1")
hfg.push_back(dtf)
hbn = hfg.eliminateSequential(
Ordering.ColamdConstrainedLastHybridGaussianFactorGraph(
hfg, [C(0)]))
hv = hbn.optimize()
self.assertEqual(hv.atDiscrete(C(0)), 1)
@staticmethod
def tiny(num_measurements: int = 1, prior_mean: float = 5.0,
prior_sigma: float = 0.5) -> HybridBayesNet:
"""
Create a tiny two variable hybrid model which represents
the generative probability P(Z, x0, mode) = P(Z|x0, mode)P(x0)P(mode).
num_measurements: number of measurements in Z = {z0, z1...}
"""
# Create hybrid Bayes net.
bayesNet = HybridBayesNet()
# Create mode key: 0 is low-noise, 1 is high-noise.
mode = (M(0), 2)
# Create Gaussian mixture Z(0) = X(0) + noise for each measurement.
I_1x1 = np.eye(1)
keys = DiscreteKeys()
keys.push_back(mode)
for i in range(num_measurements):
conditional0 = GaussianConditional.FromMeanAndStddev(Z(i),
I_1x1,
X(0), [0],
sigma=0.5)
conditional1 = GaussianConditional.FromMeanAndStddev(Z(i),
I_1x1,
X(0), [0],
sigma=3)
bayesNet.emplaceMixture([Z(i)], [X(0)], keys,
[conditional0, conditional1])
# Create prior on X(0).
prior_on_x0 = GaussianConditional.FromMeanAndStddev(
X(0), [prior_mean], prior_sigma)
bayesNet.addGaussian(prior_on_x0)
# Add prior on mode.
bayesNet.emplaceDiscrete(mode, "4/6")
return bayesNet
def test_evaluate(self):
"""Test evaluate with two different prior noise models."""
# TODO(dellaert): really a HBN test
# Create a tiny Bayes net P(x0) P(m0) P(z0|x0)
bayesNet1 = self.tiny(prior_sigma=0.5, num_measurements=1)
bayesNet2 = self.tiny(prior_sigma=5.0, num_measurements=1)
# bn1: # 1/sqrt(2*pi*0.5^2)
# bn2: # 1/sqrt(2*pi*5.0^2)
expected_ratio = np.sqrt(2*np.pi*5.0**2)/np.sqrt(2*np.pi*0.5**2)
mean0 = HybridValues()
mean0.insert(X(0), [5.0])
mean0.insert(Z(0), [5.0])
mean0.insert(M(0), 0)
self.assertAlmostEqual(bayesNet1.evaluate(mean0) /
bayesNet2.evaluate(mean0), expected_ratio,
delta=1e-9)
mean1 = HybridValues()
mean1.insert(X(0), [5.0])
mean1.insert(Z(0), [5.0])
mean1.insert(M(0), 1)
self.assertAlmostEqual(bayesNet1.evaluate(mean1) /
bayesNet2.evaluate(mean1), expected_ratio,
delta=1e-9)
@staticmethod
def measurements(sample: HybridValues, indices) -> gtsam.VectorValues:
"""Create measurements from a sample, grabbing Z(i) for indices."""
measurements = gtsam.VectorValues()
for i in indices:
measurements.insert(Z(i), sample.at(Z(i)))
return measurements
@classmethod
def factor_graph_from_bayes_net(cls, bayesNet: HybridBayesNet,
sample: HybridValues):
"""Create a factor graph from the Bayes net with sampled measurements.
The factor graph is `P(x)P(n) ϕ(x, n; z0) ϕ(x, n; z1) ...`
and thus represents the same joint probability as the Bayes net.
"""
fg = HybridGaussianFactorGraph()
num_measurements = bayesNet.size() - 2
for i in range(num_measurements):
conditional = bayesNet.atMixture(i)
factor = conditional.likelihood(cls.measurements(sample, [i]))
fg.push_back(factor)
fg.push_back(bayesNet.atGaussian(num_measurements))
fg.push_back(bayesNet.atDiscrete(num_measurements+1))
return fg
@classmethod
def estimate_marginals(cls, target, proposal_density: HybridBayesNet,
N=10000):
"""Do importance sampling to estimate discrete marginal P(mode)."""
# Allocate space for marginals on mode.
marginals = np.zeros((2,))
# Do importance sampling.
for s in range(N):
proposed = proposal_density.sample() # sample from proposal
target_proposed = target(proposed) # evaluate target
# print(target_proposed, proposal_density.evaluate(proposed))
weight = target_proposed / proposal_density.evaluate(proposed)
# print weight:
# print(f"weight: {weight}")
marginals[proposed.atDiscrete(M(0))] += weight
# print marginals:
marginals /= marginals.sum()
return marginals
def test_tiny(self):
"""Test a tiny two variable hybrid model."""
# P(x0)P(mode)P(z0|x0,mode)
prior_sigma = 0.5
bayesNet = self.tiny(prior_sigma=prior_sigma)
# Deterministic values exactly at the mean, for both x and Z:
values = HybridValues()
values.insert(X(0), [5.0])
values.insert(M(0), 0) # low-noise, standard deviation 0.5
z0: float = 5.0
values.insert(Z(0), [z0])
def unnormalized_posterior(x):
"""Posterior is proportional to joint, centered at 5.0 as well."""
x.insert(Z(0), [z0])
return bayesNet.evaluate(x)
# Create proposal density on (x0, mode), making sure it has same mean:
posterior_information = 1/(prior_sigma**2) + 1/(0.5**2)
posterior_sigma = posterior_information**(-0.5)
proposal_density = self.tiny(
num_measurements=0, prior_mean=5.0, prior_sigma=posterior_sigma)
# Estimate marginals using importance sampling.
marginals = self.estimate_marginals(
target=unnormalized_posterior, proposal_density=proposal_density)
# print(f"True mode: {values.atDiscrete(M(0))}")
# print(f"P(mode=0; Z) = {marginals[0]}")
# print(f"P(mode=1; Z) = {marginals[1]}")
# Check that the estimate is close to the true value.
self.assertAlmostEqual(marginals[0], 0.74, delta=0.01)
self.assertAlmostEqual(marginals[1], 0.26, delta=0.01)
fg = self.factor_graph_from_bayes_net(bayesNet, values)
self.assertEqual(fg.size(), 3)
# Test elimination.
ordering = gtsam.Ordering()
ordering.push_back(X(0))
ordering.push_back(M(0))
posterior = fg.eliminateSequential(ordering)
def true_posterior(x):
"""Posterior from elimination."""
x.insert(Z(0), [z0])
return posterior.evaluate(x)
# Estimate marginals using importance sampling.
marginals = self.estimate_marginals(
target=true_posterior, proposal_density=proposal_density)
# print(f"True mode: {values.atDiscrete(M(0))}")
# print(f"P(mode=0; z0) = {marginals[0]}")
# print(f"P(mode=1; z0) = {marginals[1]}")
# Check that the estimate is close to the true value.
self.assertAlmostEqual(marginals[0], 0.74, delta=0.01)
self.assertAlmostEqual(marginals[1], 0.26, delta=0.01)
@staticmethod
def calculate_ratio(bayesNet: HybridBayesNet,
fg: HybridGaussianFactorGraph,
sample: HybridValues):
"""Calculate ratio between Bayes net and factor graph."""
return bayesNet.evaluate(sample) / fg.probPrime(sample) if \
fg.probPrime(sample) > 0 else 0
def test_ratio(self):
"""
Given a tiny two variable hybrid model, with 2 measurements, test the
ratio of the bayes net model representing P(z,x,n)=P(z|x, n)P(x)P(n)
and the factor graph P(x, n | z)=P(x | n, z)P(n|z),
both of which represent the same posterior.
"""
# Create generative model P(z, x, n)=P(z|x, n)P(x)P(n)
prior_sigma = 0.5
bayesNet = self.tiny(prior_sigma=prior_sigma, num_measurements=2)
# Deterministic values exactly at the mean, for both x and Z:
values = HybridValues()
values.insert(X(0), [5.0])
values.insert(M(0), 0) # high-noise, standard deviation 3
measurements = gtsam.VectorValues()
measurements.insert(Z(0), [4.0])
measurements.insert(Z(1), [6.0])
values.insert(measurements)
def unnormalized_posterior(x):
"""Posterior is proportional to joint, centered at 5.0 as well."""
x.insert(measurements)
return bayesNet.evaluate(x)
# Create proposal density on (x0, mode), making sure it has same mean:
posterior_information = 1/(prior_sigma**2) + 2.0/(3.0**2)
posterior_sigma = posterior_information**(-0.5)
proposal_density = self.tiny(
num_measurements=0, prior_mean=5.0, prior_sigma=posterior_sigma)
# Estimate marginals using importance sampling.
marginals = self.estimate_marginals(
target=unnormalized_posterior, proposal_density=proposal_density)
# print(f"True mode: {values.atDiscrete(M(0))}")
# print(f"P(mode=0; Z) = {marginals[0]}")
# print(f"P(mode=1; Z) = {marginals[1]}")
# Check that the estimate is close to the true value.
self.assertAlmostEqual(marginals[0], 0.23, delta=0.01)
self.assertAlmostEqual(marginals[1], 0.77, delta=0.01)
# Convert to factor graph using measurements.
fg = self.factor_graph_from_bayes_net(bayesNet, values)
self.assertEqual(fg.size(), 4)
# Calculate ratio between Bayes net probability and the factor graph:
expected_ratio = self.calculate_ratio(bayesNet, fg, values)
# print(f"expected_ratio: {expected_ratio}\n")
# Check with a number of other samples.
for i in range(10):
samples = bayesNet.sample()
samples.update(measurements)
ratio = self.calculate_ratio(bayesNet, fg, samples)
# print(f"Ratio: {ratio}\n")
if (ratio > 0):
self.assertAlmostEqual(ratio, expected_ratio)
# Test elimination.
ordering = gtsam.Ordering()
ordering.push_back(X(0))
ordering.push_back(M(0))
posterior = fg.eliminateSequential(ordering)
# Calculate ratio between Bayes net probability and the factor graph:
expected_ratio = self.calculate_ratio(posterior, fg, values)
# print(f"expected_ratio: {expected_ratio}\n")
# Check with a number of other samples.
for i in range(10):
samples = posterior.sample()
samples.insert(measurements)
ratio = self.calculate_ratio(posterior, fg, samples)
# print(f"Ratio: {ratio}\n")
if (ratio > 0):
self.assertAlmostEqual(ratio, expected_ratio)
if __name__ == "__main__":
unittest.main()