419 lines
15 KiB
C++
419 lines
15 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testQPSolver.cpp
|
|
* @brief Test simple QP solver for a linear inequality constraint
|
|
* @date Apr 10, 2014
|
|
* @author Duy-Nguyen Ta
|
|
*/
|
|
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam_unstable/linear/QPSolver.h>
|
|
#include <gtsam_unstable/linear/QPSParser.h>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace gtsam::symbol_shorthand;
|
|
|
|
static const Vector kOne = Vector::Ones(1), kZero = Vector::Zero(1);
|
|
|
|
/* ************************************************************************* */
|
|
// Create test graph according to Forst10book_pg171Ex5
|
|
QP createTestCase() {
|
|
QP qp;
|
|
|
|
// Objective functions x1^2 - x1*x2 + x2^2 - 3*x1 + 5
|
|
// Note the Hessian encodes:
|
|
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
|
|
// Hence, we have G11=2, G12 = -1, g1 = +3, G22 = 2, g2 = 0, f = 10
|
|
//TODO: THIS TEST MIGHT BE WRONG : the last parameter might be 5 instead of 10 because the form of the equation
|
|
// Should be 0.5x'Gx + gx + f : Nocedal 449
|
|
qp.cost.push_back(
|
|
HessianFactor(X(1), X(2), 2.0 * I_1x1, -I_1x1, 3.0 * I_1x1, 2.0 * I_1x1,
|
|
Z_1x1, 10.0));
|
|
|
|
// Inequality constraints
|
|
qp.inequalities.push_back(LinearInequality(X(1), I_1x1, X(2), I_1x1, 2, 0)); // x1 + x2 <= 2 --> x1 + x2 -2 <= 0, --> b=2
|
|
qp.inequalities.push_back(LinearInequality(X(1), -I_1x1, 0, 1)); // -x1 <= 0
|
|
qp.inequalities.push_back(LinearInequality(X(2), -I_1x1, 0, 2)); // -x2 <= 0
|
|
qp.inequalities.push_back(LinearInequality(X(1), I_1x1, 1.5, 3)); // x1 <= 3/2
|
|
|
|
return qp;
|
|
}
|
|
|
|
TEST(QPSolver, TestCase) {
|
|
VectorValues values;
|
|
double x1 = 5, x2 = 7;
|
|
values.insert(X(1), x1 * I_1x1);
|
|
values.insert(X(2), x2 * I_1x1);
|
|
QP qp = createTestCase();
|
|
DOUBLES_EQUAL(29, x1 * x1 - x1 * x2 + x2 * x2 - 3 * x1 + 5, 1e-9);
|
|
DOUBLES_EQUAL(29, qp.cost[0]->error(values), 1e-9);
|
|
}
|
|
|
|
TEST(QPSolver, constraintsAux) {
|
|
QP qp = createTestCase();
|
|
|
|
QPSolver solver(qp);
|
|
|
|
VectorValues lambdas;
|
|
lambdas.insert(0, (Vector(1) << -0.5).finished());
|
|
lambdas.insert(1, kZero);
|
|
lambdas.insert(2, (Vector(1) << 0.3).finished());
|
|
lambdas.insert(3, (Vector(1) << 0.1).finished());
|
|
int factorIx = solver.identifyLeavingConstraint(qp.inequalities, lambdas);
|
|
LONGS_EQUAL(2, factorIx);
|
|
|
|
VectorValues lambdas2;
|
|
lambdas2.insert(0, (Vector(1) << -0.5).finished());
|
|
lambdas2.insert(1, kZero);
|
|
lambdas2.insert(2, (Vector(1) << -0.3).finished());
|
|
lambdas2.insert(3, (Vector(1) << -0.1).finished());
|
|
int factorIx2 = solver.identifyLeavingConstraint(qp.inequalities, lambdas2);
|
|
LONGS_EQUAL(-1, factorIx2);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Create a simple test graph with one equality constraint
|
|
QP createEqualityConstrainedTest() {
|
|
QP qp;
|
|
|
|
// Objective functions x1^2 + x2^2
|
|
// Note the Hessian encodes:
|
|
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
|
|
// Hence, we have G11=2, G12 = 0, g1 = 0, G22 = 2, g2 = 0, f = 0
|
|
qp.cost.push_back(
|
|
HessianFactor(X(1), X(2), 2.0 * I_1x1, Z_1x1, Z_1x1, 2.0 * I_1x1, Z_1x1,
|
|
0.0));
|
|
|
|
// Equality constraints
|
|
// x1 + x2 = 1 --> x1 + x2 -1 = 0, hence we negate the b vector
|
|
Matrix A1 = I_1x1;
|
|
Matrix A2 = I_1x1;
|
|
Vector b = -kOne;
|
|
qp.equalities.push_back(LinearEquality(X(1), A1, X(2), A2, b, 0));
|
|
|
|
return qp;
|
|
}
|
|
|
|
TEST(QPSolver, dual) {
|
|
QP qp = createEqualityConstrainedTest();
|
|
|
|
// Initials values
|
|
VectorValues initialValues;
|
|
initialValues.insert(X(1), I_1x1);
|
|
initialValues.insert(X(2), I_1x1);
|
|
|
|
QPSolver solver(qp);
|
|
|
|
GaussianFactorGraph::shared_ptr dualGraph = solver.buildDualGraph(
|
|
qp.inequalities, initialValues);
|
|
VectorValues dual = dualGraph->optimize();
|
|
VectorValues expectedDual;
|
|
expectedDual.insert(0, (Vector(1) << 2.0).finished());
|
|
CHECK(assert_equal(expectedDual, dual, 1e-10));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(QPSolver, indentifyActiveConstraints) {
|
|
QP qp = createTestCase();
|
|
QPSolver solver(qp);
|
|
|
|
VectorValues currentSolution;
|
|
currentSolution.insert(X(1), Z_1x1);
|
|
currentSolution.insert(X(2), Z_1x1);
|
|
|
|
InequalityFactorGraph workingSet = solver.identifyActiveConstraints(
|
|
qp.inequalities, currentSolution);
|
|
|
|
CHECK(!workingSet.at(0)->active()); // inactive
|
|
CHECK(workingSet.at(1)->active());// active
|
|
CHECK(workingSet.at(2)->active());// active
|
|
CHECK(!workingSet.at(3)->active());// inactive
|
|
|
|
VectorValues solution = solver.buildWorkingGraph(workingSet).optimize();
|
|
VectorValues expectedSolution;
|
|
expectedSolution.insert(X(1), kZero);
|
|
expectedSolution.insert(X(2), kZero);
|
|
CHECK(assert_equal(expectedSolution, solution, 1e-100));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(QPSolver, iterate) {
|
|
QP qp = createTestCase();
|
|
QPSolver solver(qp);
|
|
|
|
VectorValues currentSolution;
|
|
currentSolution.insert(X(1), Z_1x1);
|
|
currentSolution.insert(X(2), Z_1x1);
|
|
|
|
std::vector<VectorValues> expectedSolutions(4), expectedDuals(4);
|
|
expectedSolutions[0].insert(X(1), kZero);
|
|
expectedSolutions[0].insert(X(2), kZero);
|
|
expectedDuals[0].insert(1, (Vector(1) << 3).finished());
|
|
expectedDuals[0].insert(2, kZero);
|
|
|
|
expectedSolutions[1].insert(X(1), (Vector(1) << 1.5).finished());
|
|
expectedSolutions[1].insert(X(2), kZero);
|
|
expectedDuals[1].insert(3, (Vector(1) << 1.5).finished());
|
|
|
|
expectedSolutions[2].insert(X(1), (Vector(1) << 1.5).finished());
|
|
expectedSolutions[2].insert(X(2), (Vector(1) << 0.75).finished());
|
|
|
|
expectedSolutions[3].insert(X(1), (Vector(1) << 1.5).finished());
|
|
expectedSolutions[3].insert(X(2), (Vector(1) << 0.5).finished());
|
|
|
|
InequalityFactorGraph workingSet = solver.identifyActiveConstraints(
|
|
qp.inequalities, currentSolution);
|
|
|
|
QPSolver::State state(currentSolution, VectorValues(), workingSet, false,
|
|
100);
|
|
|
|
int it = 0;
|
|
while (!state.converged) {
|
|
state = solver.iterate(state);
|
|
// These checks will fail because the expected solutions obtained from
|
|
// Forst10book do not follow exactly what we implemented from Nocedal06book.
|
|
// Specifically, we do not re-identify active constraints and
|
|
// do not recompute dual variables after every step!!!
|
|
// CHECK(assert_equal(expectedSolutions[it], state.values, 1e-10));
|
|
// CHECK(assert_equal(expectedDuals[it], state.duals, 1e-10));
|
|
it++;
|
|
}
|
|
|
|
CHECK(assert_equal(expectedSolutions[3], state.values, 1e-10));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
TEST(QPSolver, optimizeForst10book_pg171Ex5) {
|
|
QP qp = createTestCase();
|
|
QPSolver solver(qp);
|
|
VectorValues initialValues;
|
|
initialValues.insert(X(1), Z_1x1);
|
|
initialValues.insert(X(2), Z_1x1);
|
|
VectorValues solution;
|
|
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initialValues);
|
|
VectorValues expectedSolution;
|
|
expectedSolution.insert(X(1), (Vector(1) << 1.5).finished());
|
|
expectedSolution.insert(X(2), (Vector(1) << 0.5).finished());
|
|
CHECK(assert_equal(expectedSolution, solution, 1e-100));
|
|
}
|
|
|
|
pair<QP, QP> testParser(QPSParser parser) {
|
|
QP exampleqp = parser.Parse();
|
|
QP expectedqp;
|
|
Key X1(Symbol('X', 1)), X2(Symbol('X', 2));
|
|
// min f(x,y) = 4 + 1.5x -y + 0.58x^2 + 2xy + 2yx + 10y^2
|
|
expectedqp.cost.push_back(
|
|
HessianFactor(X1, X2, 8.0 * I_1x1, 2.0 * I_1x1, -1.5 * kOne, 10.0 * I_1x1,
|
|
2.0 * kOne, 8.0));
|
|
// 2x + y >= 2
|
|
// -x + 2y <= 6
|
|
expectedqp.inequalities.push_back(
|
|
LinearInequality(X1, -2.0 * I_1x1, X2, -I_1x1, -2, 0));
|
|
expectedqp.inequalities.push_back(
|
|
LinearInequality(X1, -I_1x1, X2, 2.0 * I_1x1, 6, 1));
|
|
// x<= 20
|
|
expectedqp.inequalities.push_back(LinearInequality(X1, I_1x1, 20, 4));
|
|
//x >= 0
|
|
expectedqp.inequalities.push_back(LinearInequality(X1, -I_1x1, 0, 2));
|
|
// y > = 0
|
|
expectedqp.inequalities.push_back(LinearInequality(X2, -I_1x1, 0, 3));
|
|
return std::make_pair(expectedqp, exampleqp);
|
|
}
|
|
;
|
|
|
|
TEST(QPSolver, ParserSyntaticTest) {
|
|
auto expectedActual = testParser(QPSParser("QPExample.QPS"));
|
|
CHECK(assert_equal(expectedActual.first.cost, expectedActual.second.cost,
|
|
1e-7));
|
|
CHECK(assert_equal(expectedActual.first.inequalities,
|
|
expectedActual.second.inequalities, 1e-7));
|
|
CHECK(assert_equal(expectedActual.first.equalities,
|
|
expectedActual.second.equalities, 1e-7));
|
|
}
|
|
|
|
TEST(QPSolver, ParserSemanticTest) {
|
|
auto expected_actual = testParser(QPSParser("QPExample.QPS"));
|
|
VectorValues actualSolution, expectedSolution;
|
|
boost::tie(expectedSolution, boost::tuples::ignore) =
|
|
QPSolver(expected_actual.first).optimize();
|
|
boost::tie(actualSolution, boost::tuples::ignore) =
|
|
QPSolver(expected_actual.second).optimize();
|
|
CHECK(assert_equal(actualSolution, expectedSolution, 1e-7));
|
|
}
|
|
|
|
TEST(QPSolver, QPExampleTest){
|
|
QP problem = QPSParser("QPExample.QPS").Parse();
|
|
VectorValues actualSolution;
|
|
auto solver = QPSolver(problem);
|
|
boost::tie(actualSolution, boost::tuples::ignore) = solver.optimize();
|
|
VectorValues expectedSolution;
|
|
expectedSolution.insert(Symbol('X',1),0.7625*I_1x1);
|
|
expectedSolution.insert(Symbol('X',2),0.4750*I_1x1);
|
|
double error_expected = problem.cost.error(expectedSolution);
|
|
double error_actual = problem.cost.error(actualSolution);
|
|
CHECK(assert_equal(expectedSolution, actualSolution, 1e-7))
|
|
CHECK(assert_equal(error_expected, error_actual))
|
|
}
|
|
|
|
TEST(QPSolver, HS21) {
|
|
QP problem = QPSParser("HS21.QPS").Parse();
|
|
VectorValues actualSolution;
|
|
VectorValues expectedSolution;
|
|
expectedSolution.insert(Symbol('X',1), 2.0*I_1x1);
|
|
expectedSolution.insert(Symbol('X',2), 0.0*I_1x1);
|
|
boost::tie(actualSolution, boost::tuples::ignore) = QPSolver(problem).optimize();
|
|
double error_actual = problem.cost.error(actualSolution);
|
|
CHECK(assert_equal(-99.9599999, error_actual, 1e-7))
|
|
CHECK(assert_equal(expectedSolution, actualSolution))
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Create Matlab's test graph as in http://www.mathworks.com/help/optim/ug/quadprog.html
|
|
QP createTestMatlabQPEx() {
|
|
QP qp;
|
|
|
|
// Objective functions 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 -6*x2
|
|
// Note the Hessian encodes:
|
|
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
|
|
// Hence, we have G11=1, G12 = -1, g1 = +2, G22 = 2, g2 = +6, f = 0
|
|
qp.cost.push_back(
|
|
HessianFactor(X(1), X(2), 1.0 * I_1x1, -I_1x1, 2.0 * I_1x1, 2.0 * I_1x1,
|
|
6 * I_1x1, 1000.0));
|
|
|
|
// Inequality constraints
|
|
qp.inequalities.push_back(LinearInequality(X(1), I_1x1, X(2), I_1x1, 2, 0)); // x1 + x2 <= 2
|
|
qp.inequalities.push_back(
|
|
LinearInequality(X(1), -I_1x1, X(2), 2 * I_1x1, 2, 1)); //-x1 + 2*x2 <=2
|
|
qp.inequalities.push_back(
|
|
LinearInequality(X(1), 2 * I_1x1, X(2), I_1x1, 3, 2)); // 2*x1 + x2 <=3
|
|
qp.inequalities.push_back(LinearInequality(X(1), -I_1x1, 0, 3)); // -x1 <= 0
|
|
qp.inequalities.push_back(LinearInequality(X(2), -I_1x1, 0, 4)); // -x2 <= 0
|
|
|
|
return qp;
|
|
}
|
|
|
|
///* ************************************************************************* */
|
|
TEST(QPSolver, optimizeMatlabEx) {
|
|
QP qp = createTestMatlabQPEx();
|
|
QPSolver solver(qp);
|
|
VectorValues initialValues;
|
|
initialValues.insert(X(1), Z_1x1);
|
|
initialValues.insert(X(2), Z_1x1);
|
|
VectorValues solution;
|
|
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initialValues);
|
|
VectorValues expectedSolution;
|
|
expectedSolution.insert(X(1), (Vector(1) << 2.0 / 3.0).finished());
|
|
expectedSolution.insert(X(2), (Vector(1) << 4.0 / 3.0).finished());
|
|
CHECK(assert_equal(expectedSolution, solution, 1e-7));
|
|
}
|
|
|
|
///* ************************************************************************* */
|
|
TEST(QPSolver, optimizeMatlabExNoinitials) {
|
|
QP qp = createTestMatlabQPEx();
|
|
QPSolver solver(qp);
|
|
VectorValues solution;
|
|
boost::tie(solution, boost::tuples::ignore) = solver.optimize();
|
|
VectorValues expectedSolution;
|
|
expectedSolution.insert(X(1), (Vector(1) << 2.0 / 3.0).finished());
|
|
expectedSolution.insert(X(2), (Vector(1) << 4.0 / 3.0).finished());
|
|
CHECK(assert_equal(expectedSolution, solution, 1e-7));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Create test graph as in Nocedal06book, Ex 16.4, pg. 475
|
|
QP createTestNocedal06bookEx16_4() {
|
|
QP qp;
|
|
|
|
qp.cost.push_back(JacobianFactor(X(1), I_1x1, I_1x1));
|
|
qp.cost.push_back(JacobianFactor(X(2), I_1x1, 2.5 * I_1x1));
|
|
|
|
// Inequality constraints
|
|
qp.inequalities.push_back(
|
|
LinearInequality(X(1), -I_1x1, X(2), 2 * I_1x1, 2, 0));
|
|
qp.inequalities.push_back(
|
|
LinearInequality(X(1), I_1x1, X(2), 2 * I_1x1, 6, 1));
|
|
qp.inequalities.push_back(
|
|
LinearInequality(X(1), I_1x1, X(2), -2 * I_1x1, 2, 2));
|
|
qp.inequalities.push_back(LinearInequality(X(1), -I_1x1, 0.0, 3));
|
|
qp.inequalities.push_back(LinearInequality(X(2), -I_1x1, 0.0, 4));
|
|
|
|
return qp;
|
|
}
|
|
|
|
TEST(QPSolver, optimizeNocedal06bookEx16_4) {
|
|
QP qp = createTestNocedal06bookEx16_4();
|
|
QPSolver solver(qp);
|
|
VectorValues initialValues;
|
|
initialValues.insert(X(1), (Vector(1) << 2.0).finished());
|
|
initialValues.insert(X(2), Z_1x1);
|
|
|
|
VectorValues solution;
|
|
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initialValues);
|
|
VectorValues expectedSolution;
|
|
expectedSolution.insert(X(1), (Vector(1) << 1.4).finished());
|
|
expectedSolution.insert(X(2), (Vector(1) << 1.7).finished());
|
|
CHECK(assert_equal(expectedSolution, solution, 1e-7));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(QPSolver, failedSubproblem) {
|
|
QP qp;
|
|
qp.cost.push_back(JacobianFactor(X(1), I_2x2, Z_2x1));
|
|
qp.cost.push_back(HessianFactor(X(1), Z_2x2, Z_2x1, 100.0));
|
|
qp.inequalities.push_back(
|
|
LinearInequality(X(1), (Matrix(1, 2) << -1.0, 0.0).finished(), -1.0, 0));
|
|
|
|
VectorValues expected;
|
|
expected.insert(X(1), (Vector(2) << 1.0, 0.0).finished());
|
|
|
|
VectorValues initialValues;
|
|
initialValues.insert(X(1), (Vector(2) << 10.0, 100.0).finished());
|
|
|
|
QPSolver solver(qp);
|
|
VectorValues solution;
|
|
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initialValues);
|
|
|
|
CHECK(assert_equal(expected, solution, 1e-7));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(QPSolver, infeasibleInitial) {
|
|
QP qp;
|
|
qp.cost.push_back(JacobianFactor(X(1), I_2x2, Vector::Zero(2)));
|
|
qp.cost.push_back(HessianFactor(X(1), Z_2x2, Vector::Zero(2), 100.0));
|
|
qp.inequalities.push_back(
|
|
LinearInequality(X(1), (Matrix(1, 2) << -1.0, 0.0).finished(), -1.0, 0));
|
|
|
|
VectorValues expected;
|
|
expected.insert(X(1), (Vector(2) << 1.0, 0.0).finished());
|
|
|
|
VectorValues initialValues;
|
|
initialValues.insert(X(1), (Vector(2) << -10.0, 100.0).finished());
|
|
|
|
QPSolver solver(qp);
|
|
VectorValues solution;
|
|
CHECK_EXCEPTION(solver.optimize(initialValues), InfeasibleInitialValues);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|
|
|