gtsam/tests/testGaussianFactor.cpp

229 lines
7.0 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGaussianFactor.cpp
* @brief Unit tests for Linear Factor
* @author Christian Potthast
* @author Frank Dellaert
**/
#include <tests/smallExample.h>
#include <gtsam/nonlinear/Symbol.h>
#include <gtsam/nonlinear/Ordering.h>
#include <gtsam/linear/GaussianConditional.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/tuple/tuple.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
#include <boost/assign/std/set.hpp>
#include <boost/assign/std/map.hpp> // for insert
using namespace boost::assign;
#include <iostream>
using namespace std;
using namespace gtsam;
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;
static SharedDiagonal
sigma0_1 = noiseModel::Isotropic::Sigma(2,0.1), sigma_02 = noiseModel::Isotropic::Sigma(2,0.2),
constraintModel = noiseModel::Constrained::All(2);
//const Key kx1 = X(1), kx2 = X(2), kl1 = L(1); // FIXME: throws exception
/* ************************************************************************* */
TEST( GaussianFactor, linearFactor )
{
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
Ordering ordering; ordering += kx1,kx2,kl1;
Matrix I = eye(2);
Vector b = Vector_(2, 2.0, -1.0);
JacobianFactor expected(ordering[kx1], -10*I,ordering[kx2], 10*I, b, noiseModel::Unit::Create(2));
// create a small linear factor graph
GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
// get the factor kf2 from the factor graph
JacobianFactor::shared_ptr lf =
boost::dynamic_pointer_cast<JacobianFactor>(fg[1]);
// check if the two factors are the same
EXPECT(assert_equal(expected,*lf));
}
/* ************************************************************************* */
TEST( GaussianFactor, getDim )
{
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
// get a factor
Ordering ordering; ordering += kx1,kx2,kl1;
GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
GaussianFactor::shared_ptr factor = fg[0];
// get the size of a variable
size_t actual = factor->getDim(factor->find(ordering[kx1]));
// verify
size_t expected = 2;
EXPECT_LONGS_EQUAL(expected, actual);
}
/* ************************************************************************* */
TEST( GaussianFactor, error )
{
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
// create a small linear factor graph
Ordering ordering; ordering += kx1,kx2,kl1;
GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
// get the first factor from the factor graph
GaussianFactor::shared_ptr lf = fg[0];
// check the error of the first factor with noisy config
VectorValues cfg = example::createZeroDelta(ordering);
// calculate the error from the factor kf1
// note the error is the same as in testNonlinearFactor
double actual = lf->error(cfg);
DOUBLES_EQUAL( 1.0, actual, 0.00000001 );
}
/* ************************************************************************* */
TEST( GaussianFactor, matrix )
{
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
// create a small linear factor graph
Ordering ordering; ordering += kx1,kx2,kl1;
GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
// get the factor kf2 from the factor graph
//GaussianFactor::shared_ptr lf = fg[1]; // NOTE: using the older version
Vector b2 = Vector_(2, 0.2, -0.1);
Matrix I = eye(2);
// render with a given ordering
Ordering ord;
ord += kx1,kx2;
JacobianFactor::shared_ptr lf(new JacobianFactor(ord[kx1], -I, ord[kx2], I, b2, sigma0_1));
// Test whitened version
Matrix A_act1; Vector b_act1;
boost::tie(A_act1,b_act1) = lf->matrix(true);
Matrix A1 = Matrix_(2,4,
-10.0, 0.0, 10.0, 0.0,
000.0,-10.0, 0.0, 10.0 );
Vector b1 = Vector_(2, 2.0, -1.0);
EQUALITY(A_act1,A1);
EQUALITY(b_act1,b1);
// Test unwhitened version
Matrix A_act2; Vector b_act2;
boost::tie(A_act2,b_act2) = lf->matrix(false);
Matrix A2 = Matrix_(2,4,
-1.0, 0.0, 1.0, 0.0,
000.0,-1.0, 0.0, 1.0 );
//Vector b2 = Vector_(2, 2.0, -1.0);
EQUALITY(A_act2,A2);
EQUALITY(b_act2,b2);
// Ensure that whitening is consistent
boost::shared_ptr<noiseModel::Gaussian> model = lf->get_model();
model->WhitenSystem(A_act2, b_act2);
EQUALITY(A_act1, A_act2);
EQUALITY(b_act1, b_act2);
}
/* ************************************************************************* */
TEST( GaussianFactor, matrix_aug )
{
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
// create a small linear factor graph
Ordering ordering; ordering += kx1,kx2,kl1;
GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
// get the factor kf2 from the factor graph
//GaussianFactor::shared_ptr lf = fg[1];
Vector b2 = Vector_(2, 0.2, -0.1);
Matrix I = eye(2);
// render with a given ordering
Ordering ord;
ord += kx1,kx2;
JacobianFactor::shared_ptr lf(new JacobianFactor(ord[kx1], -I, ord[kx2], I, b2, sigma0_1));
// Test unwhitened version
Matrix Ab_act1;
Ab_act1 = lf->matrix_augmented(false);
Matrix Ab1 = Matrix_(2,5,
-1.0, 0.0, 1.0, 0.0, 0.2,
00.0,- 1.0, 0.0, 1.0, -0.1 );
EQUALITY(Ab_act1,Ab1);
// Test whitened version
Matrix Ab_act2;
Ab_act2 = lf->matrix_augmented(true);
Matrix Ab2 = Matrix_(2,5,
-10.0, 0.0, 10.0, 0.0, 2.0,
00.0, -10.0, 0.0, 10.0, -1.0 );
EQUALITY(Ab_act2,Ab2);
// Ensure that whitening is consistent
boost::shared_ptr<noiseModel::Gaussian> model = lf->get_model();
model->WhitenInPlace(Ab_act1);
EQUALITY(Ab_act1, Ab_act2);
}
/* ************************************************************************* */
// small aux. function to print out lists of anything
template<class T>
void print(const list<T>& i) {
copy(i.begin(), i.end(), ostream_iterator<T> (cout, ","));
cout << endl;
}
/* ************************************************************************* */
TEST( GaussianFactor, size )
{
// create a linear factor graph
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
Ordering ordering; ordering += kx1,kx2,kl1;
GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
// get some factors from the graph
boost::shared_ptr<GaussianFactor> factor1 = fg[0];
boost::shared_ptr<GaussianFactor> factor2 = fg[1];
boost::shared_ptr<GaussianFactor> factor3 = fg[2];
EXPECT_LONGS_EQUAL(1, factor1->size());
EXPECT_LONGS_EQUAL(2, factor2->size());
EXPECT_LONGS_EQUAL(2, factor3->size());
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */