gtsam/tests/testNonlinearFactorGraph.cpp

171 lines
5.5 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testNonlinearFactorGraph.cpp
* @brief Unit tests for Non-Linear Factor NonlinearFactorGraph
* @brief testNonlinearFactorGraph
* @author Carlos Nieto
* @author Christian Potthast
*/
/*STL/C++*/
#include <iostream>
using namespace std;
#include <boost/assign/std/list.hpp>
#include <boost/assign/std/set.hpp>
using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/Matrix.h>
#include <tests/smallExample.h>
#include <gtsam/inference/FactorGraph.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/symbolic/SymbolicFactorGraph.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
using namespace gtsam;
using namespace example;
using symbol_shorthand::X;
using symbol_shorthand::L;
/* ************************************************************************* */
TEST( NonlinearFactorGraph, equals )
{
NonlinearFactorGraph fg = createNonlinearFactorGraph();
NonlinearFactorGraph fg2 = createNonlinearFactorGraph();
CHECK( fg.equals(fg2) );
}
/* ************************************************************************* */
TEST( NonlinearFactorGraph, error )
{
NonlinearFactorGraph fg = createNonlinearFactorGraph();
Values c1 = createValues();
double actual1 = fg.error(c1);
DOUBLES_EQUAL( 0.0, actual1, 1e-9 );
Values c2 = createNoisyValues();
double actual2 = fg.error(c2);
DOUBLES_EQUAL( 5.625, actual2, 1e-9 );
}
/* ************************************************************************* */
TEST( NonlinearFactorGraph, keys )
{
NonlinearFactorGraph fg = createNonlinearFactorGraph();
FastSet<Key> actual = fg.keys();
LONGS_EQUAL(3, (long)actual.size());
FastSet<Key>::const_iterator it = actual.begin();
LONGS_EQUAL((long)L(1), (long)*(it++));
LONGS_EQUAL((long)X(1), (long)*(it++));
LONGS_EQUAL((long)X(2), (long)*(it++));
}
/* ************************************************************************* */
TEST( NonlinearFactorGraph, GET_ORDERING)
{
Ordering expected; expected += L(1), X(2), X(1); // For starting with l1,x1,x2
NonlinearFactorGraph nlfg = createNonlinearFactorGraph();
Ordering actual = Ordering::colamd(nlfg);
EXPECT(assert_equal(expected,actual));
// Constrained ordering - put x2 at the end
Ordering expectedConstrained; expectedConstrained += L(1), X(1), X(2);
FastMap<Key, int> constraints;
constraints[X(2)] = 1;
Ordering actualConstrained = Ordering::colamdConstrained(nlfg, constraints);
EXPECT(assert_equal(expectedConstrained, actualConstrained));
}
/* ************************************************************************* */
TEST( NonlinearFactorGraph, probPrime )
{
NonlinearFactorGraph fg = createNonlinearFactorGraph();
Values cfg = createValues();
// evaluate the probability of the factor graph
double actual = fg.probPrime(cfg);
double expected = 1.0;
DOUBLES_EQUAL(expected,actual,0);
}
/* ************************************************************************* */
TEST( NonlinearFactorGraph, linearize )
{
NonlinearFactorGraph fg = createNonlinearFactorGraph();
Values initial = createNoisyValues();
GaussianFactorGraph linearized = *fg.linearize(initial);
GaussianFactorGraph expected = createGaussianFactorGraph();
CHECK(assert_equal(expected,linearized)); // Needs correct linearizations
}
/* ************************************************************************* */
TEST( NonlinearFactorGraph, clone )
{
NonlinearFactorGraph fg = createNonlinearFactorGraph();
NonlinearFactorGraph actClone = fg.clone();
EXPECT(assert_equal(fg, actClone));
for (size_t i=0; i<fg.size(); ++i)
EXPECT(fg[i] != actClone[i]);
}
/* ************************************************************************* */
TEST( NonlinearFactorGraph, rekey )
{
NonlinearFactorGraph init = createNonlinearFactorGraph();
map<Key,Key> rekey_mapping;
rekey_mapping.insert(make_pair(L(1), L(4)));
NonlinearFactorGraph actRekey = init.rekey(rekey_mapping);
// ensure deep clone
LONGS_EQUAL((long)init.size(), (long)actRekey.size());
for (size_t i=0; i<init.size(); ++i)
EXPECT(init[i] != actRekey[i]);
NonlinearFactorGraph expRekey;
// original measurements
expRekey.push_back(init[0]);
expRekey.push_back(init[1]);
// updated measurements
Point2 z3(0, -1), z4(-1.5, -1.);
SharedDiagonal sigma0_2 = noiseModel::Isotropic::Sigma(2,0.2);
expRekey += simulated2D::Measurement(z3, sigma0_2, X(1), L(4));
expRekey += simulated2D::Measurement(z4, sigma0_2, X(2), L(4));
EXPECT(assert_equal(expRekey, actRekey));
}
/* ************************************************************************* */
TEST( NonlinearFactorGraph, symbolic )
{
NonlinearFactorGraph graph = createNonlinearFactorGraph();
SymbolicFactorGraph expected;
expected.push_factor(X(1));
expected.push_factor(X(1), X(2));
expected.push_factor(X(1), L(1));
expected.push_factor(X(2), L(1));
SymbolicFactorGraph actual = *graph.symbolic();
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */