gtsam/gtsam_unstable/nonlinear/BatchFixedLagSmoother.cpp

523 lines
19 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file BatchFixedLagSmoother.cpp
* @brief An LM-based fixed-lag smoother.
*
* @author Michael Kaess, Stephen Williams
* @date Oct 14, 2012
*/
#include <gtsam_unstable/nonlinear/BatchFixedLagSmoother.h>
#include <gtsam/nonlinear/LinearContainerFactor.h>
#include <gtsam/linear/GaussianJunctionTree.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/GaussianFactor.h>
//#include <gtsam/inference/inference.h>
#include <gtsam/base/debug.h>
namespace gtsam {
/* ************************************************************************* */
void BatchFixedLagSmoother::print(const std::string& s, const KeyFormatter& keyFormatter) const {
FixedLagSmoother::print(s, keyFormatter);
// TODO: What else to print?
}
/* ************************************************************************* */
bool BatchFixedLagSmoother::equals(const FixedLagSmoother& rhs, double tol) const {
const BatchFixedLagSmoother* e = dynamic_cast<const BatchFixedLagSmoother*> (&rhs);
return e != NULL
&& FixedLagSmoother::equals(*e, tol)
&& factors_.equals(e->factors_, tol)
&& theta_.equals(e->theta_, tol);
}
/* ************************************************************************* */
FixedLagSmoother::Result BatchFixedLagSmoother::update(const NonlinearFactorGraph& newFactors, const Values& newTheta, const KeyTimestampMap& timestamps) {
const bool debug = ISDEBUG("BatchFixedLagSmoother update");
if(debug) {
std::cout << "BatchFixedLagSmoother::update() START" << std::endl;
}
// Update all of the internal variables with the new information
gttic(augment_system);
// Add the new variables to theta
theta_.insert(newTheta);
// Add new variables to the end of the ordering
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, newTheta) {
ordering_.push_back(key_value.key);
}
// Augment Delta
delta_.insert(newTheta.zeroVectors());
// Add the new factors to the graph, updating the variable index
insertFactors(newFactors);
gttoc(augment_system);
// Update the Timestamps associated with the factor keys
updateKeyTimestampMap(timestamps);
// Get current timestamp
double current_timestamp = getCurrentTimestamp();
if(debug) std::cout << "Current Timestamp: " << current_timestamp << std::endl;
// Find the set of variables to be marginalized out
std::set<Key> marginalizableKeys = findKeysBefore(current_timestamp - smootherLag_);
if(debug) {
std::cout << "Marginalizable Keys: ";
BOOST_FOREACH(Key key, marginalizableKeys) {
std::cout << DefaultKeyFormatter(key) << " ";
}
std::cout << std::endl;
}
// Reorder
gttic(reorder);
reorder(marginalizableKeys);
gttoc(reorder);
// Optimize
gttic(optimize);
Result result;
if(factors_.size() > 0) {
result = optimize();
}
gttoc(optimize);
// Marginalize out old variables.
gttic(marginalize);
if(marginalizableKeys.size() > 0) {
marginalize(marginalizableKeys);
}
gttoc(marginalize);
if(debug) {
std::cout << "BatchFixedLagSmoother::update() FINISH" << std::endl;
}
return result;
}
/* ************************************************************************* */
void BatchFixedLagSmoother::insertFactors(const NonlinearFactorGraph& newFactors) {
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, newFactors) {
Key index;
// Insert the factor into an existing hole in the factor graph, if possible
if(availableSlots_.size() > 0) {
index = availableSlots_.front();
availableSlots_.pop();
factors_.replace(index, factor);
} else {
index = factors_.size();
factors_.push_back(factor);
}
// Update the FactorIndex
BOOST_FOREACH(Key key, *factor) {
factorIndex_[key].insert(index);
}
}
}
/* ************************************************************************* */
void BatchFixedLagSmoother::removeFactors(const std::set<size_t>& deleteFactors) {
BOOST_FOREACH(size_t slot, deleteFactors) {
if(factors_.at(slot)) {
// Remove references to this factor from the FactorIndex
BOOST_FOREACH(Key key, *(factors_.at(slot))) {
factorIndex_[key].erase(slot);
}
// Remove the factor from the factor graph
factors_.remove(slot);
// Add the factor's old slot to the list of available slots
availableSlots_.push(slot);
} else {
// TODO: Throw an error??
std::cout << "Attempting to remove a factor from slot " << slot << ", but it is already NULL." << std::endl;
}
}
}
/* ************************************************************************* */
void BatchFixedLagSmoother::eraseKeys(const std::set<Key>& keys) {
BOOST_FOREACH(Key key, keys) {
// Erase the key from the values
theta_.erase(key);
// Erase the key from the factor index
factorIndex_.erase(key);
// Erase the key from the set of linearized keys
if(linearKeys_.exists(key)) {
linearKeys_.erase(key);
}
}
eraseKeyTimestampMap(keys);
// Remove marginalized keys from the ordering and delta
BOOST_FOREACH(Key key, keys) {
ordering_.erase(std::find(ordering_.begin(), ordering_.end(), key));
delta_.erase(key);
}
}
/* ************************************************************************* */
void BatchFixedLagSmoother::reorder(const std::set<Key>& marginalizeKeys) {
const bool debug = ISDEBUG("BatchFixedLagSmoother reorder");
if(debug) {
std::cout << "BatchFixedLagSmoother::reorder() START" << std::endl;
}
if(debug) {
std::cout << "Marginalizable Keys: ";
BOOST_FOREACH(Key key, marginalizeKeys) {
std::cout << DefaultKeyFormatter(key) << " ";
}
std::cout << std::endl;
}
// COLAMD groups will be used to place marginalize keys in Group 0, and everything else in Group 1
ordering_ = Ordering::colamdConstrainedFirst(factors_, std::vector<Key>(marginalizeKeys.begin(), marginalizeKeys.end()));
if(debug) {
ordering_.print("New Ordering: ");
}
if(debug) {
std::cout << "BatchFixedLagSmoother::reorder() FINISH" << std::endl;
}
}
/* ************************************************************************* */
FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
const bool debug = ISDEBUG("BatchFixedLagSmoother optimize");
if(debug) {
std::cout << "BatchFixedLagSmoother::optimize() START" << std::endl;
}
// Create output result structure
Result result;
result.nonlinearVariables = theta_.size() - linearKeys_.size();
result.linearVariables = linearKeys_.size();
// Set optimization parameters
double lambda = parameters_.lambdaInitial;
double lambdaFactor = parameters_.lambdaFactor;
double lambdaUpperBound = parameters_.lambdaUpperBound;
double lambdaLowerBound = 1.0e-10;
size_t maxIterations = parameters_.maxIterations;
double relativeErrorTol = parameters_.relativeErrorTol;
double absoluteErrorTol = parameters_.absoluteErrorTol;
double errorTol = parameters_.errorTol;
// Create a Values that holds the current evaluation point
Values evalpoint = theta_.retract(delta_);
result.error = factors_.error(evalpoint);
// check if we're already close enough
if(result.error <= errorTol) {
if(debug) { std::cout << "BatchFixedLagSmoother::optimize Exiting, as error = " << result.error << " < " << errorTol << std::endl; }
return result;
}
if(debug) {
std::cout << "BatchFixedLagSmoother::optimize linearValues: " << linearKeys_.size() << std::endl;
std::cout << "BatchFixedLagSmoother::optimize Initial error: " << result.error << std::endl;
}
// Use a custom optimization loop so the linearization points can be controlled
double previousError;
VectorValues newDelta;
do {
previousError = result.error;
// Do next iteration
gttic(optimizer_iteration);
{
// Linearize graph around the linearization point
GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_);
// Keep increasing lambda until we make make progress
while(true) {
if(debug) { std::cout << "BatchFixedLagSmoother::optimize trying lambda = " << lambda << std::endl; }
// Add prior factors at the current solution
gttic(damp);
GaussianFactorGraph dampedFactorGraph(linearFactorGraph);
dampedFactorGraph.reserve(linearFactorGraph.size() + delta_.size());
{
// for each of the variables, add a prior at the current solution
double sigma = 1.0 / std::sqrt(lambda);
BOOST_FOREACH(const VectorValues::KeyValuePair& key_value, delta_) {
size_t dim = key_value.second.size();
Matrix A = Matrix::Identity(dim,dim);
Vector b = key_value.second;
SharedDiagonal model = noiseModel::Isotropic::Sigma(dim, sigma);
GaussianFactor::shared_ptr prior(new JacobianFactor(key_value.first, A, b, model));
dampedFactorGraph.push_back(prior);
}
}
gttoc(damp);
result.intermediateSteps++;
gttic(solve);
// Solve Damped Gaussian Factor Graph
newDelta = dampedFactorGraph.optimize(ordering_, parameters_.getEliminationFunction());
// update the evalpoint with the new delta
evalpoint = theta_.retract(newDelta);
gttoc(solve);
// Evaluate the new error
gttic(compute_error);
double error = factors_.error(evalpoint);
gttoc(compute_error);
if(debug) {
std::cout << "BatchFixedLagSmoother::optimize linear delta norm = " << newDelta.norm() << std::endl;
std::cout << "BatchFixedLagSmoother::optimize next error = " << error << std::endl;
}
if(error < result.error) {
// Keep this change
// Update the error value
result.error = error;
// Update the linearization point
theta_ = evalpoint;
// Reset the deltas to zeros
delta_.setZero();
// Put the linearization points and deltas back for specific variables
if(enforceConsistency_ && (linearKeys_.size() > 0)) {
theta_.update(linearKeys_);
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, linearKeys_) {
delta_.at(key_value.key) = newDelta.at(key_value.key);
}
}
// Decrease lambda for next time
lambda /= lambdaFactor;
if(lambda < lambdaLowerBound) {
lambda = lambdaLowerBound;
}
// End this lambda search iteration
break;
} else {
// Reject this change
if(lambda >= lambdaUpperBound) {
// The maximum lambda has been used. Print a warning and end the search.
std::cout << "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda" << std::endl;
break;
} else {
// Increase lambda and continue searching
lambda *= lambdaFactor;
}
}
} // end while
}
gttoc(optimizer_iteration);
if(debug) { std::cout << "BatchFixedLagSmoother::optimize using lambda = " << lambda << std::endl; }
result.iterations++;
} while(result.iterations < maxIterations &&
!checkConvergence(relativeErrorTol, absoluteErrorTol, errorTol, previousError, result.error, NonlinearOptimizerParams::SILENT));
if(debug) { std::cout << "BatchFixedLagSmoother::optimize newError: " << result.error << std::endl; }
if(debug) {
std::cout << "BatchFixedLagSmoother::optimize() FINISH" << std::endl;
}
return result;
}
/* ************************************************************************* */
void BatchFixedLagSmoother::marginalize(const std::set<Key>& marginalizeKeys) {
// In order to marginalize out the selected variables, the factors involved in those variables
// must be identified and removed. Also, the effect of those removed factors on the
// remaining variables needs to be accounted for. This will be done with linear container factors
// from the result of a partial elimination. This function removes the marginalized factors and
// adds the linearized factors back in.
const bool debug = ISDEBUG("BatchFixedLagSmoother marginalize");
if(debug) std::cout << "BatchFixedLagSmoother::marginalize Begin" << std::endl;
if(debug) {
std::cout << "BatchFixedLagSmoother::marginalize Marginalize Keys: ";
BOOST_FOREACH(Key key, marginalizeKeys) {
std::cout << DefaultKeyFormatter(key) << " ";
}
std::cout << std::endl;
}
// Identify all of the factors involving any marginalized variable. These must be removed.
std::set<size_t> removedFactorSlots;
VariableIndex variableIndex(factors_);
BOOST_FOREACH(Key key, marginalizeKeys) {
const FastList<size_t>& slots = variableIndex[key];
removedFactorSlots.insert(slots.begin(), slots.end());
}
if(debug) {
std::cout << "BatchFixedLagSmoother::marginalize Removed Factor Slots: ";
BOOST_FOREACH(size_t slot, removedFactorSlots) {
std::cout << slot << " ";
}
std::cout << std::endl;
}
// Add the removed factors to a factor graph
NonlinearFactorGraph removedFactors;
BOOST_FOREACH(size_t slot, removedFactorSlots) {
if(factors_.at(slot)) {
removedFactors.push_back(factors_.at(slot));
}
}
if(debug) {
PrintSymbolicGraph(removedFactors, "BatchFixedLagSmoother::marginalize Removed Factors: ");
}
// Calculate marginal factors on the remaining keys
NonlinearFactorGraph marginalFactors = calculateMarginalFactors(removedFactors, theta_, marginalizeKeys, parameters_.getEliminationFunction());
if(debug) {
PrintSymbolicGraph(removedFactors, "BatchFixedLagSmoother::marginalize Marginal Factors: ");
}
// Remove marginalized factors from the factor graph
removeFactors(removedFactorSlots);
// Remove marginalized keys from the system
eraseKeys(marginalizeKeys);
// Insert the new marginal factors
insertFactors(marginalFactors);
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintKeySet(const std::set<Key>& keys, const std::string& label) {
std::cout << label;
BOOST_FOREACH(gtsam::Key key, keys) {
std::cout << " " << gtsam::DefaultKeyFormatter(key);
}
std::cout << std::endl;
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintKeySet(const gtsam::FastSet<Key>& keys, const std::string& label) {
std::cout << label;
BOOST_FOREACH(gtsam::Key key, keys) {
std::cout << " " << gtsam::DefaultKeyFormatter(key);
}
std::cout << std::endl;
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintSymbolicFactor(const NonlinearFactor::shared_ptr& factor) {
std::cout << "f(";
if(factor) {
BOOST_FOREACH(Key key, factor->keys()) {
std::cout << " " << gtsam::DefaultKeyFormatter(key);
}
} else {
std::cout << " NULL";
}
std::cout << " )" << std::endl;
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintSymbolicFactor(const GaussianFactor::shared_ptr& factor) {
std::cout << "f(";
BOOST_FOREACH(Key key, factor->keys()) {
std::cout << " " << gtsam::DefaultKeyFormatter(key);
}
std::cout << " )" << std::endl;
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintSymbolicGraph(const NonlinearFactorGraph& graph, const std::string& label) {
std::cout << label << std::endl;
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, graph) {
PrintSymbolicFactor(factor);
}
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintSymbolicGraph(const GaussianFactorGraph& graph, const std::string& label) {
std::cout << label << std::endl;
BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, graph) {
PrintSymbolicFactor(factor);
}
}
/* ************************************************************************* */
NonlinearFactorGraph BatchFixedLagSmoother::calculateMarginalFactors(const NonlinearFactorGraph& graph, const Values& theta,
const std::set<Key>& marginalizeKeys, const GaussianFactorGraph::Eliminate& eliminateFunction) {
const bool debug = ISDEBUG("BatchFixedLagSmoother calculateMarginalFactors");
if(debug) std::cout << "BatchFixedLagSmoother::calculateMarginalFactors START" << std::endl;
if(debug) PrintKeySet(marginalizeKeys, "BatchFixedLagSmoother::calculateMarginalFactors Marginalize Keys: ");
// Get the set of all keys involved in the factor graph
FastSet<Key> allKeys(graph.keys());
if(debug) PrintKeySet(allKeys, "BatchFixedLagSmoother::calculateMarginalFactors All Keys: ");
// Calculate the set of RemainingKeys = AllKeys \Intersect marginalizeKeys
FastSet<Key> remainingKeys;
std::set_difference(allKeys.begin(), allKeys.end(), marginalizeKeys.begin(), marginalizeKeys.end(), std::inserter(remainingKeys, remainingKeys.end()));
if(debug) PrintKeySet(remainingKeys, "BatchFixedLagSmoother::calculateMarginalFactors Remaining Keys: ");
if(marginalizeKeys.size() == 0) {
// There are no keys to marginalize. Simply return the input factors
if(debug) std::cout << "BatchFixedLagSmoother::calculateMarginalFactors FINISH" << std::endl;
return graph;
} else {
// Create the linear factor graph
GaussianFactorGraph linearFactorGraph = *graph.linearize(theta);
// .first is the eliminated Bayes tree, while .second is the remaining factor graph
GaussianFactorGraph marginalLinearFactors = *linearFactorGraph.eliminatePartialMultifrontal(std::vector<Key>(marginalizeKeys.begin(), marginalizeKeys.end())).second;
// Wrap in nonlinear container factors
NonlinearFactorGraph marginalFactors;
marginalFactors.reserve(marginalLinearFactors.size());
BOOST_FOREACH(const GaussianFactor::shared_ptr& gaussianFactor, marginalLinearFactors) {
marginalFactors += boost::make_shared<LinearContainerFactor>(gaussianFactor, theta);
if(debug) {
std::cout << "BatchFixedLagSmoother::calculateMarginalFactors Marginal Factor: ";
PrintSymbolicFactor(marginalFactors.back());
}
}
if(debug) PrintSymbolicGraph(marginalFactors, "BatchFixedLagSmoother::calculateMarginalFactors All Marginal Factors: ");
if(debug) std::cout << "BatchFixedLagSmoother::calculateMarginalFactors FINISH" << std::endl;
return marginalFactors;
}
}
/* ************************************************************************* */
} /// namespace gtsam