81 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Matlab
		
	
	
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| % GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
| % Atlanta, Georgia 30332-0415
 | |
| % All Rights Reserved
 | |
| % Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| %
 | |
| % See LICENSE for the license information
 | |
| %
 | |
| % @brief Simple robotics example using the pre-built planar SLAM domain
 | |
| % @author Alex Cunningham
 | |
| % @author Frank Dellaert
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| import gtsam.*
 | |
| 
 | |
| %% Assumptions
 | |
| %  - All values are axis aligned
 | |
| %  - Robot poses are facing along the X axis (horizontal, to the right in images)
 | |
| %  - We have bearing and range information for measurements
 | |
| %  - We have full odometry for measurements
 | |
| %  - The robot and landmarks are on a grid, moving 2 meters each step
 | |
| %  - Landmarks are 2 meters away from the robot trajectory
 | |
| 
 | |
| %% Create keys for variables
 | |
| i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
 | |
| j1 = symbol('l',1); j2 = symbol('l',2);
 | |
| 
 | |
| %% Create graph container and add factors to it
 | |
| graph = NonlinearFactorGraph;
 | |
| 
 | |
| %% Add prior
 | |
| priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
 | |
| priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
 | |
| graph.add(PriorFactorPose2(i1, priorMean, priorNoise));
 | |
| 
 | |
| %% Add odometry
 | |
| odometry = Pose2(2.0, 0.0, 0.0);
 | |
| odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
 | |
| graph.add(BetweenFactorPose2(i1, i2, odometry, odometryNoise));
 | |
| graph.add(BetweenFactorPose2(i2, i3, odometry, odometryNoise));
 | |
| 
 | |
| %% Add bearing/range measurement factors
 | |
| degrees = pi/180;
 | |
| brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
 | |
| graph.add(BearingRangeFactor2D(i1, j1, Rot2(45*degrees), sqrt(8), brNoise));
 | |
| graph.add(BearingRangeFactor2D(i2, j1, Rot2(90*degrees), 2, brNoise));
 | |
| graph.add(BearingRangeFactor2D(i3, j2, Rot2(90*degrees), 2, brNoise));
 | |
| 
 | |
| % print
 | |
| graph.print(sprintf('\nFull graph:\n'));
 | |
| 
 | |
| %% Initialize to noisy points
 | |
| initialEstimate = Values;
 | |
| initialEstimate.insert(i1, Pose2(0.5, 0.0, 0.2));
 | |
| initialEstimate.insert(i2, Pose2(2.3, 0.1,-0.2));
 | |
| initialEstimate.insert(i3, Pose2(4.1, 0.1, 0.1));
 | |
| initialEstimate.insert(j1, Point2(1.8, 2.1));
 | |
| initialEstimate.insert(j2, Point2(4.1, 1.8));
 | |
| 
 | |
| initialEstimate.print(sprintf('\nInitial estimate:\n'));
 | |
| 
 | |
| %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
 | |
| optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate);
 | |
| result = optimizer.optimizeSafely();
 | |
| result.print(sprintf('\nFinal result:\n'));
 | |
| 
 | |
| %% Plot Covariance Ellipses
 | |
| cla;hold on
 | |
| 
 | |
| marginals = Marginals(graph, result);
 | |
| plot2DTrajectory(result, [], marginals);
 | |
| plot2DPoints(result, 'b', marginals);
 | |
| 
 | |
| plot([result.atPose2(i1).x; result.atPoint2(j1).x],[result.atPose2(i1).y; result.atPoint2(j1).y], 'c-');
 | |
| plot([result.atPose2(i2).x; result.atPoint2(j1).x],[result.atPose2(i2).y; result.atPoint2(j1).y], 'c-');
 | |
| plot([result.atPose2(i3).x; result.atPoint2(j2).x],[result.atPose2(i3).y; result.atPoint2(j2).y], 'c-');
 | |
| axis([-0.6 4.8 -1 1])
 | |
| axis equal
 | |
| view(2)
 | |
| 
 |