gtsam/tests/testGaussianISAM.cpp

329 lines
12 KiB
C++

/**
* @file testGaussianISAM.cpp
* @brief Unit tests for GaussianISAM
* @author Michael Kaess
*/
#include <boost/foreach.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
using namespace boost::assign;
#include <gtsam/CppUnitLite/TestHarness.h>
#define GTSAM_MAGIC_KEY
#include <gtsam/inference/Ordering.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/inference/ISAM-inl.h>
#include <gtsam/linear/GaussianISAM.h>
#include <gtsam/slam/smallExample.h>
using namespace std;
using namespace gtsam;
using namespace example;
/* ************************************************************************* */
// Some numbers that should be consistent among all smoother tests
double sigmax1 = 0.786153, sigmax2 = 1.0/1.47292, sigmax3 = 0.671512, sigmax4 =
0.669534, sigmax5 = sigmax3, sigmax6 = sigmax2, sigmax7 = sigmax1;
const double tol = 1e-4;
/* ************************************************************************* */
TEST( ISAM, iSAM_smoother )
{
// Create smoother with 7 nodes
GaussianFactorGraph smoother = createSmoother(7);
// run iSAM for every factor
GaussianISAM actual;
BOOST_FOREACH(boost::shared_ptr<GaussianFactor> factor, smoother) {
GaussianFactorGraph factorGraph;
factorGraph.push_back(factor);
actual.update(factorGraph);
}
// Create expected Bayes Tree by solving smoother with "natural" ordering
Ordering ordering;
for (int t = 1; t <= 7; t++) ordering += symbol('x', t);
GaussianISAM expected(smoother.eliminate(ordering));
// Check whether BayesTree is correct
CHECK(assert_equal(expected, actual));
// obtain solution
VectorConfig e; // expected solution
Vector v = Vector_(2, 0., 0.);
for (int i=1; i<=7; i++)
e.insert(symbol('x', i), v);
VectorConfig optimized = optimize(actual); // actual solution
CHECK(assert_equal(e, optimized));
}
/* ************************************************************************* */
TEST( ISAM, iSAM_smoother2 )
{
// Create smoother with 7 nodes
GaussianFactorGraph smoother = createSmoother(7);
// Create initial tree from first 4 timestamps in reverse order !
Ordering ord; ord += "x4","x3","x2","x1";
GaussianFactorGraph factors1;
for (int i=0;i<7;i++) factors1.push_back(smoother[i]);
GaussianISAM actual(factors1.eliminate(ord));
// run iSAM with remaining factors
GaussianFactorGraph factors2;
for (int i=7;i<13;i++) factors2.push_back(smoother[i]);
actual.update(factors2);
// Create expected Bayes Tree by solving smoother with "natural" ordering
Ordering ordering;
for (int t = 1; t <= 7; t++) ordering += symbol('x', t);
GaussianISAM expected(smoother.eliminate(ordering));
CHECK(assert_equal(expected, actual));
}
/* ************************************************************************* *
Bayes tree for smoother with "natural" ordering:
C1 x6 x7
C2 x5 : x6
C3 x4 : x5
C4 x3 : x4
C5 x2 : x3
C6 x1 : x2
/* ************************************************************************* */
TEST( BayesTree, linear_smoother_shortcuts )
{
// Create smoother with 7 nodes
GaussianFactorGraph smoother = createSmoother(7);
Ordering ordering;
for (int t = 1; t <= 7; t++)
ordering.push_back(symbol('x', t));
// eliminate using the "natural" ordering
GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering);
// Create the Bayes tree
GaussianISAM bayesTree(chordalBayesNet);
LONGS_EQUAL(6,bayesTree.size());
// Check the conditional P(Root|Root)
GaussianBayesNet empty;
GaussianISAM::sharedClique R = bayesTree.root();
GaussianBayesNet actual1 = R->shortcut<GaussianFactor>(R);
CHECK(assert_equal(empty,actual1,tol));
// Check the conditional P(C2|Root)
GaussianISAM::sharedClique C2 = bayesTree["x5"];
GaussianBayesNet actual2 = C2->shortcut<GaussianFactor>(R);
CHECK(assert_equal(empty,actual2,tol));
// Check the conditional P(C3|Root)
double sigma3 = 0.61808;
Matrix A56 = Matrix_(2,2,-0.382022,0.,0.,-0.382022);
GaussianBayesNet expected3;
push_front(expected3,"x5", zero(2), eye(2)/sigma3, "x6", A56/sigma3, ones(2));
GaussianISAM::sharedClique C3 = bayesTree["x4"];
GaussianBayesNet actual3 = C3->shortcut<GaussianFactor>(R);
CHECK(assert_equal(expected3,actual3,tol));
// Check the conditional P(C4|Root)
double sigma4 = 0.661968;
Matrix A46 = Matrix_(2,2,-0.146067,0.,0.,-0.146067);
GaussianBayesNet expected4;
push_front(expected4,"x4", zero(2), eye(2)/sigma4, "x6", A46/sigma4, ones(2));
GaussianISAM::sharedClique C4 = bayesTree["x3"];
GaussianBayesNet actual4 = C4->shortcut<GaussianFactor>(R);
CHECK(assert_equal(expected4,actual4,tol));
}
/* ************************************************************************* *
Bayes tree for smoother with "nested dissection" ordering:
Node[x1] P(x1 | x2)
Node[x3] P(x3 | x2 x4)
Node[x5] P(x5 | x4 x6)
Node[x7] P(x7 | x6)
Node[x2] P(x2 | x4)
Node[x6] P(x6 | x4)
Node[x4] P(x4)
becomes
C1 x5 x6 x4
C2 x3 x2 : x4
C3 x1 : x2
C4 x7 : x6
/* ************************************************************************* */
TEST( BayesTree, balanced_smoother_marginals )
{
// Create smoother with 7 nodes
GaussianFactorGraph smoother = createSmoother(7);
Ordering ordering;
ordering += "x1","x3","x5","x7","x2","x6","x4";
// eliminate using a "nested dissection" ordering
GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering);
VectorConfig expectedSolution;
BOOST_FOREACH(string key, ordering)
expectedSolution.insert(key,zero(2));
VectorConfig actualSolution = optimize(chordalBayesNet);
CHECK(assert_equal(expectedSolution,actualSolution,tol));
// Create the Bayes tree
GaussianISAM bayesTree(chordalBayesNet);
LONGS_EQUAL(4,bayesTree.size());
double tol=1e-5;
// Check marginal on x1
GaussianBayesNet expected1 = simpleGaussian("x1", zero(2), sigmax1);
GaussianBayesNet actual1 = bayesTree.marginalBayesNet<GaussianFactor>("x1");
CHECK(assert_equal(expected1,actual1,tol));
// Check marginal on x2
double sigx2 = 0.68712938; // FIXME: this should be corrected analytically
GaussianBayesNet expected2 = simpleGaussian("x2", zero(2), sigx2);
GaussianBayesNet actual2 = bayesTree.marginalBayesNet<GaussianFactor>("x2");
CHECK(assert_equal(expected2,actual2,tol)); // FAILS
// Check marginal on x3
GaussianBayesNet expected3 = simpleGaussian("x3", zero(2), sigmax3);
GaussianBayesNet actual3 = bayesTree.marginalBayesNet<GaussianFactor>("x3");
CHECK(assert_equal(expected3,actual3,tol));
// Check marginal on x4
GaussianBayesNet expected4 = simpleGaussian("x4", zero(2), sigmax4);
GaussianBayesNet actual4 = bayesTree.marginalBayesNet<GaussianFactor>("x4");
CHECK(assert_equal(expected4,actual4,tol));
// Check marginal on x7 (should be equal to x1)
GaussianBayesNet expected7 = simpleGaussian("x7", zero(2), sigmax7);
GaussianBayesNet actual7 = bayesTree.marginalBayesNet<GaussianFactor>("x7");
CHECK(assert_equal(expected7,actual7,tol));
}
/* ************************************************************************* */
TEST( BayesTree, balanced_smoother_shortcuts )
{
// Create smoother with 7 nodes
GaussianFactorGraph smoother = createSmoother(7);
Ordering ordering;
ordering += "x1","x3","x5","x7","x2","x6","x4";
// Create the Bayes tree
GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering);
GaussianISAM bayesTree(chordalBayesNet);
// Check the conditional P(Root|Root)
GaussianBayesNet empty;
GaussianISAM::sharedClique R = bayesTree.root();
GaussianBayesNet actual1 = R->shortcut<GaussianFactor>(R);
CHECK(assert_equal(empty,actual1,tol));
// Check the conditional P(C2|Root)
GaussianISAM::sharedClique C2 = bayesTree["x3"];
GaussianBayesNet actual2 = C2->shortcut<GaussianFactor>(R);
CHECK(assert_equal(empty,actual2,tol));
// Check the conditional P(C3|Root), which should be equal to P(x2|x4)
GaussianConditional::shared_ptr p_x2_x4 = chordalBayesNet["x2"];
GaussianBayesNet expected3; expected3.push_back(p_x2_x4);
GaussianISAM::sharedClique C3 = bayesTree["x1"];
GaussianBayesNet actual3 = C3->shortcut<GaussianFactor>(R);
CHECK(assert_equal(expected3,actual3,tol));
}
/* ************************************************************************* */
TEST( BayesTree, balanced_smoother_clique_marginals )
{
// Create smoother with 7 nodes
GaussianFactorGraph smoother = createSmoother(7);
Ordering ordering;
ordering += "x1","x3","x5","x7","x2","x6","x4";
// Create the Bayes tree
GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering);
GaussianISAM bayesTree(chordalBayesNet);
// Check the clique marginal P(C3)
double sigmax2_alt = 1/1.45533; // THIS NEEDS TO BE CHECKED!
GaussianBayesNet expected = simpleGaussian("x2",zero(2),sigmax2_alt);
push_front(expected,"x1", zero(2), eye(2)*sqrt(2), "x2", -eye(2)*sqrt(2)/2, ones(2));
GaussianISAM::sharedClique R = bayesTree.root(), C3 = bayesTree["x1"];
FactorGraph<GaussianFactor> marginal = C3->marginal<GaussianFactor>(R);
GaussianBayesNet actual = eliminate<GaussianFactor,GaussianConditional>(marginal,C3->keys());
CHECK(assert_equal(expected,actual,tol));
}
/* ************************************************************************* */
TEST( BayesTree, balanced_smoother_joint )
{
// Create smoother with 7 nodes
GaussianFactorGraph smoother = createSmoother(7);
Ordering ordering;
ordering += "x1","x3","x5","x7","x2","x6","x4";
// Create the Bayes tree, expected to look like:
// x5 x6 x4
// x3 x2 : x4
// x1 : x2
// x7 : x6
GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering);
GaussianISAM bayesTree(chordalBayesNet);
// Conditional density elements reused by both tests
const Vector sigma = ones(2);
const Matrix I = eye(2), A = -0.00429185*I;
// Check the joint density P(x1,x7) factored as P(x1|x7)P(x7)
GaussianBayesNet expected1;
// Why does the sign get flipped on the prior?
GaussianConditional::shared_ptr
parent1(new GaussianConditional("x7", zero(2), -1*I/sigmax7, ones(2)));
expected1.push_front(parent1);
push_front(expected1,"x1", zero(2), I/sigmax7, "x7", A/sigmax7, sigma);
GaussianBayesNet actual1 = bayesTree.jointBayesNet<GaussianFactor>("x1","x7");
CHECK(assert_equal(expected1,actual1,tol));
// Check the joint density P(x7,x1) factored as P(x7|x1)P(x1)
GaussianBayesNet expected2;
GaussianConditional::shared_ptr
parent2(new GaussianConditional("x1", zero(2), -1*I/sigmax1, ones(2)));
expected2.push_front(parent2);
push_front(expected2,"x7", zero(2), I/sigmax1, "x1", A/sigmax1, sigma);
GaussianBayesNet actual2 = bayesTree.jointBayesNet<GaussianFactor>("x7","x1");
CHECK(assert_equal(expected2,actual2,tol));
// Check the joint density P(x1,x4), i.e. with a root variable
GaussianBayesNet expected3;
GaussianConditional::shared_ptr
parent3(new GaussianConditional("x4", zero(2), I/sigmax4, ones(2)));
expected3.push_front(parent3);
double sig14 = 0.784465;
Matrix A14 = -0.0769231*I;
push_front(expected3,"x1", zero(2), I/sig14, "x4", A14/sig14, sigma);
GaussianBayesNet actual3 = bayesTree.jointBayesNet<GaussianFactor>("x1","x4");
CHECK(assert_equal(expected3,actual3,tol));
// Check the joint density P(x4,x1), i.e. with a root variable, factored the other way
GaussianBayesNet expected4;
GaussianConditional::shared_ptr
parent4(new GaussianConditional("x1", zero(2), -1.0*I/sigmax1, ones(2)));
expected4.push_front(parent4);
double sig41 = 0.668096;
Matrix A41 = -0.055794*I;
push_front(expected4,"x4", zero(2), I/sig41, "x1", A41/sig41, sigma);
GaussianBayesNet actual4 = bayesTree.jointBayesNet<GaussianFactor>("x4","x1");
CHECK(assert_equal(expected4,actual4,tol));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */