gtsam/spqr_mini/SuiteSparseQR_subset.hpp

605 lines
24 KiB
C++

// =============================================================================
// === SuiteSparseQR.hpp =======================================================
// =============================================================================
// User include file for C++ programs.
#ifndef SUITESPARSEQR_H
#define SUITESPARSEQR_H
// -----------------------------------------------------------------------------
// include files
// -----------------------------------------------------------------------------
#include "cholmod.h"
#include "UFconfig.h"
#include "SuiteSparseQR_definitions.h"
// =============================================================================
// === spqr_symbolic ===========================================================
// =============================================================================
// The contents of this object do not change during numeric factorization. The
// Symbolic object depends only on the pattern of the input matrix, and not its
// values. These contents also do not change with column pivoting for rank
// detection. This makes parallelism easier to manage, since all threads can
// have access to this object without synchronization.
//
// The total size of the Symbolic object is (10 + 2*m + anz + 2*n + 5*nf + rnz)
// Int's, where the user's input A matrix is m-by-n with anz nonzeros, nf <=
// MIN(m,n) is the number of frontal matrices, and rnz <= nnz(R) is the number
// of column indices used to represent the supernodal form of R (one Int per
// non-pivotal column index in the leading row of each block of R).
struct spqr_symbolic
{
// -------------------------------------------------------------------------
// row-form of the input matrix and its permutations
// -------------------------------------------------------------------------
// During symbolic analysis, the nonzero pattern of S = A(P,Q) is
// constructed, where A is the user's input matrix. Its numerical values
// are also constructed, but they do not become part of the Symbolic
// object. The matrix S is stored in row-oriented form. The rows of S are
// sorted according to their leftmost column index (via PLinv). Column
// indices in each row of S are in strictly ascending order, even though
// the input matrix A need not be sorted.
UF_long m, n, anz ; // S is m-by-n with anz entries
UF_long *Sp ; // size m+1, row pointers of S
UF_long *Sj ; // size anz = Sp [n], column indices of S
UF_long *Qfill ; // size n, fill-reducing column permutation.
// Qfill [k] = j if column k of A is column j of S.
UF_long *PLinv ; // size m, inverse row permutation that places S=A(P,Q)
// in increasing order of leftmost column index.
// PLinv [i] = k if row i of A is row k of S.
UF_long *Sleft ; // size n+2. The list of rows of S whose leftmost
// column index is j is given by
// Sleft [j] ... Sleft [j+1]-1. This can be empty (that is, Sleft
// [j] can equal Sleft [j+1]). Sleft [n] is the number of
// non-empty rows of S, and Sleft [n+1] == m. That is, Sleft [n]
// ... Sleft [n+1]-1 gives the empty rows of S, if any.
// -------------------------------------------------------------------------
// frontal matrices: pattern and tree
// -------------------------------------------------------------------------
// Each frontal matrix is fm-by-fn, with fnpiv pivot columns. The fn
// column indices are given by a set of size fnpiv pivot columns, defined
// by Super, followed by the pattern Rj [ Rp[f] ... Rp[f+1]-1 ].
// The row indices of the front are not kept. If the Householder vectors
// are not kept, the row indices are not needed. If the Householder
// vectors are kept, the row indices are computed dynamically during
// numerical factorization.
UF_long nf ; // number of frontal matrices; nf <= MIN (m,n)
UF_long maxfn ; // max # of columns in any front
// parent, child, and childp define the row merge tree or etree (A'A)
UF_long *Parent ; // size nf+1
UF_long *Child ; // size nf+1
UF_long *Childp ; // size nf+2
// The parent of a front f is Parent [f], or EMPTY if f=nf.
// A list of children of f can be obtained in the list
// Child [Childp [f] ... Childp [f+1]-1].
// Node nf in the tree is a placeholder; it does not represent a frontal
// matrix. All roots of the frontal "tree" (may be a forest) have the
// placeholder node nf as their parent. Thus, the tree of nodes 0:nf is
// truly a tree, with just one parent (node nf).
UF_long *Super ; // size nf+1. Super [f] gives the first pivot column
// in the front F. This refers to a column of S. The
// number of expected pivot columns in F is thus
// Super [f+1] - Super [f].
UF_long *Rp ; // size nf+1
UF_long *Rj ; // size rjsize; compressed supernodal form of R
UF_long *Post ; // size nf+1, post ordering of frontal tree. f=Post[k]
// gives the kth node in the postordered tree
UF_long rjsize ; // size of Rj
UF_long do_rank_detection ; // TRUE: allow for tol >= 0. FALSE: ignore tol
// the rest depends on whether or not rank-detection is allowed:
UF_long maxstack ; // max stack size (sequential case)
UF_long hisize ; // size of Hii
UF_long keepH ; // TRUE if H is present
UF_long *Hip ; // size nf+1. If H is kept, the row indices of frontal
// matrix f are in Hii [Hip [f] ... Hip [f] + Hm [f]],
// where Hii and Hm are stored in the numeric object.
// There is one block row of R per frontal matrix.
// The fn column indices of R are given by Rj [Rp [f] ... Rp [f+1]-1],
// where the first fp column indices are Super [f] ... Super [f+1]-1.
// The remaining column indices in Rj [...] are non-pivotal, and are
// in the range Super [f+1] to n. The number of rows of R is at
// most fp, but can be less if dead columns appear in the matrix.
// The number of columns in the contribution block C is always
// cn = fn - fp, where fn = Rp [f+1] - Rp [f].
UF_long ntasks ; // number of tasks in task graph
UF_long ns ; // number of stacks
// -------------------------------------------------------------------------
// the rest of the QR symbolic object is present only if ntasks > 1
// -------------------------------------------------------------------------
// Task tree (nodes 0:ntasks), including placeholder node
UF_long *TaskChildp ; // size ntasks+2
UF_long *TaskChild ; // size ntasks+1
UF_long *TaskStack ; // size ntasks+1
// list of fronts for each task
UF_long *TaskFront ; // size nf+1
UF_long *TaskFrontp ; // size ntasks+2
UF_long *On_stack ; // size nf+1, front f is on stack On_stack [f]
// size of each stack
UF_long *Stack_maxstack ; // size ns+2
} ;
// =============================================================================
// === spqr_numeric ============================================================
// =============================================================================
// The Numeric object contains the numerical values of the triangular/
// trapezoidal factor R, and optionally the Householder vectors H if they
// are kept.
template <typename Entry> struct spqr_numeric
{
// -------------------------------------------------------------------------
// Numeric R factor
// -------------------------------------------------------------------------
Entry **Rblock ; // size nf. R [f] is an (Entry *) pointer to the
// R block for front F. It is an upper trapezoidal
// of size Rm(f)-by-Rn(f), but only the upper
// triangular part is stored in column-packed format.
Entry **Stacks ; // size ns; an array of stacks holding the R and H
// factors and the current frontal matrix F at the head.
// This is followed by empty space, then the C blocks of
// prior frontal matrices at the bottom. When the
// factorization is complete, only the R and H part at
// the head of each stack is left.
UF_long *Stack_size ; // size ns; Stack_size [s] is the size of Stacks [s]
UF_long hisize ; // size of Hii
UF_long n ; // A is m-by-n
UF_long m ;
UF_long nf ; // number of frontal matrices
UF_long ntasks ; // number of tasks in task graph actually used
UF_long ns ; // number of stacks actually used
UF_long maxstack ; // size of sequential stack, if used
// -------------------------------------------------------------------------
// for rank detection and m < n case
// -------------------------------------------------------------------------
char *Rdead ; // size n, Rdead [k] = 1 if k is a dead pivot column,
// Rdead [k] = 0 otherwise. If no columns are dead,
// this is NULL. If m < n, then at least m-n columns
// will be dead.
UF_long rank ; // number of live pivot columns
UF_long rank1 ; // number of live pivot columns in first ntol columns
// of A
UF_long maxfrank ; // max number of rows in any R block
double norm_E_fro ; // 2-norm of w, the vector of dead column 2-norms
// -------------------------------------------------------------------------
// for keeping Householder vectors
// -------------------------------------------------------------------------
// The factorization is R = (H_s * ... * H_2 * H_1) * P_H
// where P_H is the permutation HPinv, and H_1, ... H_s are the Householder
// vectors (s = rjsize).
UF_long keepH ; // TRUE if H is present
UF_long rjsize ; // size of Hstair and HTau
UF_long *HStair ; // size rjsize. The list Hstair [Rp [f] ... Rp [f+1]-1]
// gives the staircase for front F
Entry *HTau ; // size rjsize. The list HTau [Rp [f] ... Rp [f+1]-1]
// gives the Householder coefficients for front F
UF_long *Hii ; // size hisize, row indices of H.
UF_long *HPinv ; // size m. HPinv [i] = k if row i of A and H is row k
// of R. This permutation includes QRsym->PLinv, and
// the permutation constructed via pivotal row ordering
// during factorization.
UF_long *Hm ; // size nf, Hm [f] = # of rows in front F
UF_long *Hr ; // size nf, Hr [f] = # of rows in R block of front F
UF_long maxfm ; // max (Hm [0:nf-1]), computed only if H kept
} ;
// =============================================================================
// === SuiteSparseQR_factorization =============================================
// =============================================================================
// A combined symbolic+numeric QR factorization of A or [A B],
// with singletons
template <typename Entry> struct SuiteSparseQR_factorization
{
// QR factorization of A or [A Binput] after singletons have been removed
double tol ; // tol used
spqr_symbolic *QRsym ;
spqr_numeric <Entry> *QRnum ;
// singletons, in compressed-row form; R is n1rows-by-n
UF_long *R1p ; // size n1rows+1
UF_long *R1j ;
Entry *R1x ;
UF_long r1nz ; // nnz (R1)
// combined singleton and fill-reducing permutation
UF_long *Q1fill ;
UF_long *P1inv ;
UF_long *HP1inv ; // NULL if n1cols == 0, in which case QRnum->HPinv
// serves in its place.
// Rmap and RmapInv are NULL if QR->rank == A->ncol
UF_long *Rmap ; // size n. Rmap [j] = k if column j of R is the kth
// live column and where k < QR->rank; otherwise, if
// j is a dead column, then k >= QR->rank.
UF_long *RmapInv ;
UF_long n1rows ; // number of singleton rows of [A B]
UF_long n1cols ; // number of singleton columns of [A B]
UF_long narows ; // number of rows of A
UF_long nacols ; // number of columns of A
UF_long bncols ; // number of columns of B
UF_long rank ; // rank estimate of A (n1rows + QRnum->rank1), ranges
// from 0 to min(m,n)
int allow_tol ; // if TRUE, do rank detection
} ;
// =============================================================================
// === Simple user-callable SuiteSparseQR functions ============================
// =============================================================================
// SuiteSparseQR Sparse QR factorization and solve
// SuiteSparseQR_qmult Q*X, Q'*X, X*Q, or X*Q' for X full or sparse
// returns rank(A) estimate, or EMPTY on failure
template <typename Entry> UF_long SuiteSparseQR
(
// inputs, not modified
int ordering, // all, except 3:given treated as 0:fixed
double tol, // only accept singletons above tol
UF_long econ, // number of rows of C and R to return; a value
// less than the rank r of A is treated as r, and
// a value greater than m is treated as m.
int getCTX, // if 0: return Z = C of size econ-by-bncols
// if 1: return Z = C' of size bncols-by-econ
// if 2: return Z = X of size econ-by-bncols
cholmod_sparse *A, // m-by-n sparse matrix
// B is either sparse or dense. If Bsparse is non-NULL, B is sparse and
// Bdense is ignored. If Bsparse is NULL and Bdense is non-NULL, then B is
// dense. B is not present if both are NULL.
cholmod_sparse *Bsparse,
cholmod_dense *Bdense,
// output arrays, neither allocated nor defined on input.
// Z is the matrix C, C', or X
cholmod_sparse **Zsparse,
cholmod_dense **Zdense,
cholmod_sparse **R, // the R factor
UF_long **E, // size n; fill-reducing ordering of A.
cholmod_sparse **H, // the Householder vectors (m-by-nh)
UF_long **HPinv, // size m; row permutation for H
cholmod_dense **HTau, // size nh, Householder coefficients
// workspace and parameters
cholmod_common *cc
) ;
// X = A\dense(B)
template <typename Entry> cholmod_dense *SuiteSparseQR
(
int ordering, // all, except 3:given treated as 0:fixed
double tol,
cholmod_sparse *A, // m-by-n sparse matrix
cholmod_dense *B, // m-by-nrhs
cholmod_common *cc // workspace and parameters
) ;
// X = A\dense(B) using default ordering and tolerance
template <typename Entry> cholmod_dense *SuiteSparseQR
(
cholmod_sparse *A, // m-by-n sparse matrix
cholmod_dense *B, // m-by-nrhs
cholmod_common *cc // workspace and parameters
) ;
// X = A\sparse(B)
template <typename Entry> cholmod_sparse *SuiteSparseQR
(
int ordering, // all, except 3:given treated as 0:fixed
double tol,
cholmod_sparse *A, // m-by-n sparse matrix
cholmod_sparse *B, // m-by-nrhs
cholmod_common *cc // workspace and parameters
) ;
// [Q,R,E] = qr(A), returning Q as a sparse matrix
template <typename Entry> UF_long SuiteSparseQR // returns rank(A) estimate
(
int ordering, // all, except 3:given treated as 0:fixed
double tol,
UF_long econ,
cholmod_sparse *A, // m-by-n sparse matrix
// outputs
cholmod_sparse **Q, // m-by-e sparse matrix where e=max(econ,rank(A))
cholmod_sparse **R, // e-by-n sparse matrix
UF_long **E, // permutation of 0:n-1, NULL if identity
cholmod_common *cc // workspace and parameters
) ;
// [Q,R,E] = qr(A), discarding Q
template <typename Entry> UF_long SuiteSparseQR // returns rank(A) estimate
(
int ordering, // all, except 3:given treated as 0:fixed
double tol,
UF_long econ,
cholmod_sparse *A, // m-by-n sparse matrix
// outputs
cholmod_sparse **R, // e-by-n sparse matrix
UF_long **E, // permutation of 0:n-1, NULL if identity
cholmod_common *cc // workspace and parameters
) ;
// [C,R,E] = qr(A,B), where C and B are dense
template <typename Entry> UF_long SuiteSparseQR
(
// inputs, not modified
int ordering, // all, except 3:given treated as 0:fixed
double tol, // only accept singletons above tol
UF_long econ, // number of rows of C and R to return
cholmod_sparse *A, // m-by-n sparse matrix
cholmod_dense *B, // m-by-nrhs dense matrix
// outputs
cholmod_dense **C, // C = Q'*B, an e-by-nrhs dense matrix
cholmod_sparse **R, // e-by-n sparse matrix where e=max(econ,rank(A))
UF_long **E, // permutation of 0:n-1, NULL if identity
cholmod_common *cc // workspace and parameters
) ;
// [C,R,E] = qr(A,B), where C and B are sparse
template <typename Entry> UF_long SuiteSparseQR
(
// inputs, not modified
int ordering, // all, except 3:given treated as 0:fixed
double tol, // only accept singletons above tol
UF_long econ, // number of rows of C and R to return
cholmod_sparse *A, // m-by-n sparse matrix
cholmod_sparse *B, // m-by-nrhs sparse matrix
// outputs
cholmod_sparse **C, // C = Q'*B, an e-by-nrhs sparse matrix
cholmod_sparse **R, // e-by-n sparse matrix where e=max(econ,rank(A))
UF_long **E, // permutation of 0:n-1, NULL if identity
cholmod_common *cc // workspace and parameters
) ;
// [Q,R,E] = qr(A) where Q is returned in Householder form
template <typename Entry> UF_long SuiteSparseQR
(
// inputs, not modified
int ordering, // all, except 3:given treated as 0:fixed
double tol, // only accept singletons above tol
UF_long econ, // number of rows of C and R to return
cholmod_sparse *A, // m-by-n sparse matrix
// outputs
cholmod_sparse **R, // the R factor
UF_long **E, // permutation of 0:n-1, NULL if identity
cholmod_sparse **H, // the Householder vectors (m-by-nh)
UF_long **HPinv, // size m; row permutation for H
cholmod_dense **HTau, // size nh, Householder coefficients
cholmod_common *cc // workspace and parameters
) ;
// =============================================================================
// === SuiteSparseQR_qmult =====================================================
// =============================================================================
// This function takes as input the matrix Q in Householder form, as returned
// by SuiteSparseQR (... H, HPinv, HTau, cc) above.
// returns Y of size m-by-n (NULL on failure)
template <typename Entry> cholmod_dense *SuiteSparseQR_qmult
(
// inputs, no modified
int method, // 0,1,2,3
cholmod_sparse *H, // either m-by-nh or n-by-nh
cholmod_dense *HTau, // size 1-by-nh
UF_long *HPinv, // size mh
cholmod_dense *Xdense, // size m-by-n
// workspace and parameters
cholmod_common *cc
) ;
template <typename Entry> cholmod_sparse *SuiteSparseQR_qmult
(
// inputs, no modified
int method, // 0,1,2,3
cholmod_sparse *H, // either m-by-nh or n-by-nh
cholmod_dense *HTau, // size 1-by-nh
UF_long *HPinv, // size mh
cholmod_sparse *X,
// workspace and parameters
cholmod_common *cc
) ;
// =============================================================================
// === Expert user-callable SuiteSparseQR functions ============================
// =============================================================================
#ifndef NEXPERT
// These functions are "expert" routines, allowing reuse of the QR
// factorization for different right-hand-sides. They also allow the user to
// find the minimum 2-norm solution to an undertermined system of equations.
template <typename Entry>
SuiteSparseQR_factorization <Entry> *SuiteSparseQR_factorize
(
// inputs, not modified:
int ordering, // all, except 3:given treated as 0:fixed
double tol, // treat columns with 2-norm <= tol as zero
cholmod_sparse *A, // sparse matrix to factorize
// workspace and parameters
cholmod_common *cc
) ;
template <typename Entry> cholmod_dense *SuiteSparseQR_solve // returns X
(
// inputs, not modified:
int system, // which system to solve
SuiteSparseQR_factorization <Entry> *QR, // of an m-by-n sparse matrix A
cholmod_dense *B, // right-hand-side, m-by-nrhs or n-by-nrhs
// workspace and parameters
cholmod_common *cc
) ;
template <typename Entry> cholmod_sparse *SuiteSparseQR_solve // returns X
(
// inputs, not modified:
int system, // which system to solve (0,1,2,3)
SuiteSparseQR_factorization <Entry> *QR, // of an m-by-n sparse matrix A
cholmod_sparse *Bsparse, // right-hand-side, m-by-nrhs or n-by-nrhs
// workspace and parameters
cholmod_common *cc
) ;
// returns Y of size m-by-n, or NULL on failure
template <typename Entry> cholmod_dense *SuiteSparseQR_qmult
(
// inputs, not modified
int method, // 0,1,2,3 (same as SuiteSparseQR_qmult)
SuiteSparseQR_factorization <Entry> *QR, // of an m-by-n sparse matrix A
cholmod_dense *Xdense, // size m-by-n with leading dimension ldx
// workspace and parameters
cholmod_common *cc
) ;
// returns Y of size m-by-n, or NULL on failure
template <typename Entry> cholmod_sparse *SuiteSparseQR_qmult
(
// inputs, not modified
int method, // 0,1,2,3
SuiteSparseQR_factorization <Entry> *QR, // of an m-by-n sparse matrix A
cholmod_sparse *Xsparse, // size m-by-n
// workspace and parameters
cholmod_common *cc
) ;
// free the QR object
template <typename Entry> int SuiteSparseQR_free
(
SuiteSparseQR_factorization <Entry> **QR, // of an m-by-n sparse matrix A
cholmod_common *cc
) ;
// find the min 2-norm solution to a sparse linear system
template <typename Entry> cholmod_dense *SuiteSparseQR_min2norm
(
int ordering, // all, except 3:given treated as 0:fixed
double tol,
cholmod_sparse *A,
cholmod_dense *B,
cholmod_common *cc
) ;
template <typename Entry> cholmod_sparse *SuiteSparseQR_min2norm
(
int ordering, // all, except 3:given treated as 0:fixed
double tol,
cholmod_sparse *A,
cholmod_sparse *B,
cholmod_common *cc
) ;
// symbolic QR factorization; no singletons exploited
template <typename Entry>
SuiteSparseQR_factorization <Entry> *SuiteSparseQR_symbolic
(
// inputs:
int ordering, // all, except 3:given treated as 0:fixed
int allow_tol, // if FALSE, tol is ignored by the numeric
// factorization, and no rank detection is performed
cholmod_sparse *A, // sparse matrix to factorize (A->x ignored)
cholmod_common *cc // workspace and parameters
) ;
// numeric QR factorization;
template <typename Entry> int SuiteSparseQR_numeric
(
// inputs:
double tol, // treat columns with 2-norm <= tol as zero
cholmod_sparse *A, // sparse matrix to factorize
// input/output
SuiteSparseQR_factorization <Entry> *QR,
cholmod_common *cc // workspace and parameters
) ;
#endif
// =============================================================================
// === high-resolution timing ==================================================
// =============================================================================
#ifdef TIMING
extern "C" {
#include <time.h>
#include <sys/time.h>
double spqr_time ( ) ; // returns current time in seconds
}
#endif
#endif