138 lines
4.0 KiB
C++
138 lines
4.0 KiB
C++
/*
|
|
* iterative-inl.h
|
|
* @brief Iterative methods, template implementation
|
|
* @author Frank Dellaert
|
|
* Created on: Dec 28, 2009
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
#include <gtsam/linear/iterative.h>
|
|
|
|
using namespace std;
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
// state for CG method
|
|
template<class S, class V, class E>
|
|
struct CGState {
|
|
|
|
bool steepest, verbose;
|
|
double gamma, threshold;
|
|
size_t k, maxIterations, reset;
|
|
V g, d;
|
|
E Ad;
|
|
|
|
/* ************************************************************************* */
|
|
// Constructor
|
|
CGState(const S& Ab, const V& x, bool verb, double epsilon,
|
|
double epsilon_abs, size_t maxIt, bool steep) {
|
|
k = 0;
|
|
verbose = verb;
|
|
steepest = steep;
|
|
maxIterations = (maxIt > 0) ? maxIt : dim(x) * (steepest ? 10 : 1);
|
|
reset = (size_t) (sqrt(dim(x)) + 0.5); // when to reset
|
|
|
|
// Start with g0 = A'*(A*x0-b), d0 = - g0
|
|
// i.e., first step is in direction of negative gradient
|
|
g = Ab.gradient(x);
|
|
d = g; // instead of negating gradient, alpha will be negated
|
|
|
|
// init gamma and calculate threshold
|
|
gamma = dot(g, g);
|
|
threshold = ::max(epsilon_abs, epsilon * epsilon * gamma);
|
|
|
|
// Allocate and calculate A*d for first iteration
|
|
if (gamma > epsilon) Ad = Ab * d;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// print
|
|
void print(const V& x) {
|
|
cout << "iteration = " << k << endl;
|
|
gtsam::print(x,"x");
|
|
gtsam::print(g, "g");
|
|
cout << "dotg = " << gamma << endl;
|
|
gtsam::print(d, "d");
|
|
gtsam::print(Ad, "Ad");
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// step the solution
|
|
double takeOptimalStep(V& x) {
|
|
// TODO: can we use gamma instead of dot(d,g) ????? Answer not trivial
|
|
double alpha = -dot(d, g) / dot(Ad, Ad); // calculate optimal step-size
|
|
axpy(alpha, d, x); // // do step in new search direction, x += alpha*d
|
|
return alpha;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// take a step, return true if converged
|
|
bool step(const S& Ab, V& x) {
|
|
k += 1; // increase iteration number
|
|
|
|
double alpha = takeOptimalStep(x);
|
|
|
|
if (k >= maxIterations) return true; //---------------------------------->
|
|
|
|
// update gradient (or re-calculate at reset time)
|
|
if (k % reset == 0)
|
|
g = Ab.gradient(x);
|
|
else
|
|
// axpy(alpha, Ab ^ Ad, g); // g += alpha*(Ab^Ad)
|
|
Ab.transposeMultiplyAdd(alpha, Ad, g);
|
|
|
|
// check for convergence
|
|
double new_gamma = dot(g, g);
|
|
if (verbose) cout << "iteration " << k << ": alpha = " << alpha
|
|
<< ", dotg = " << new_gamma << endl;
|
|
if (new_gamma < threshold) return true; //---------------------------------->
|
|
|
|
// calculate new search direction
|
|
if (steepest)
|
|
d = g;
|
|
else {
|
|
double beta = new_gamma / gamma;
|
|
// d = g + d*beta;
|
|
scal(beta, d);
|
|
axpy(1.0, g, d);
|
|
}
|
|
gamma = new_gamma;
|
|
|
|
// In-place recalculation Ad <- A*d to avoid re-allocating Ad
|
|
Ab.multiplyInPlace(d, Ad);
|
|
return false;
|
|
}
|
|
|
|
}; // CGState Class
|
|
|
|
/* ************************************************************************* */
|
|
// conjugate gradient method.
|
|
// S: linear system, V: step vector, E: errors
|
|
template<class S, class V, class E>
|
|
V conjugateGradients(const S& Ab, V x, bool verbose, double epsilon,
|
|
double epsilon_abs, size_t maxIterations, bool steepest = false) {
|
|
|
|
CGState<S, V, E> state(Ab, x, verbose, epsilon, epsilon_abs, maxIterations,steepest);
|
|
if (verbose) cout << "CG: epsilon = " << epsilon << ", maxIterations = "
|
|
<< state.maxIterations << ", ||g0||^2 = " << state.gamma
|
|
<< ", threshold = " << state.threshold << endl;
|
|
|
|
if (state.gamma < state.threshold) {
|
|
if (verbose) cout << "||g0||^2 < threshold, exiting immediately !" << endl;
|
|
return x;
|
|
}
|
|
|
|
// loop maxIterations times
|
|
while (!state.step(Ab, x))
|
|
;
|
|
|
|
return x;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
} // namespace gtsam
|