83 lines
3.0 KiB
C++
83 lines
3.0 KiB
C++
/*
|
|
* SubgraphSolver-inl.h
|
|
*
|
|
* Created on: Jan 17, 2010
|
|
* Author: nikai
|
|
* Description: subgraph preconditioning conjugate gradient solver
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <gtsam/linear/SubgraphSolver.h>
|
|
|
|
#include <gtsam/inference/graph-inl.h>
|
|
#include <gtsam/linear/iterative-inl.h>
|
|
#include <gtsam/inference/FactorGraph-inl.h>
|
|
|
|
using namespace std;
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
template<class Graph, class Config>
|
|
SubgraphSolver<Graph, Config>::SubgraphSolver(const Graph& G, const Config& theta0) {
|
|
initialize(G,theta0);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Graph, class Config>
|
|
void SubgraphSolver<Graph, Config>::initialize(const Graph& G, const Config& theta0) {
|
|
|
|
// generate spanning tree
|
|
PredecessorMap<Key> tree = G.template findMinimumSpanningTree<Key, Constraint>();
|
|
list<Key> keys = predecessorMap2Keys(tree);
|
|
|
|
// split the graph
|
|
if (verbose_) cout << "generating spanning tree and split the graph ...";
|
|
G.template split<Key, Constraint>(tree, T_, C_);
|
|
if (verbose_) cout << T_.size() << " and " << C_.size() << " factors" << endl;
|
|
|
|
// make the ordering
|
|
list<Symbol> symbols;
|
|
symbols.resize(keys.size());
|
|
std::transform(keys.begin(), keys.end(), symbols.begin(), key2symbol<Key>);
|
|
ordering_ = boost::shared_ptr<Ordering>(new Ordering(symbols));
|
|
|
|
// compose the approximate solution
|
|
Key root = keys.back();
|
|
theta_bar_ = composePoses<Graph, Constraint, Pose, Config> (T_, tree, theta0[root]);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Graph, class Config>
|
|
boost::shared_ptr<SubgraphPreconditioner> SubgraphSolver<Graph, Config>::linearize(const Graph& G, const Config& theta_bar) const {
|
|
SubgraphPreconditioner::sharedFG Ab1 = T_.linearize(theta_bar);
|
|
SubgraphPreconditioner::sharedFG Ab2 = C_.linearize(theta_bar);
|
|
#ifdef TIMING
|
|
SubgraphPreconditioner::sharedBayesNet Rc1;
|
|
SubgraphPreconditioner::sharedConfig xbar;
|
|
#else
|
|
GaussianFactorGraph sacrificialAb1 = *Ab1; // duplicate !!!!!
|
|
SubgraphPreconditioner::sharedBayesNet Rc1 = sacrificialAb1.eliminate_(*ordering_);
|
|
SubgraphPreconditioner::sharedConfig xbar = gtsam::optimize_(*Rc1);
|
|
#endif
|
|
// TODO: there does not seem to be a good reason to have Ab1_
|
|
// It seems only be used to provide an ordering for creating sparse matrices
|
|
return boost::shared_ptr<SubgraphPreconditioner>(new SubgraphPreconditioner(Ab1, Ab2, Rc1, xbar));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Graph, class Config>
|
|
VectorConfig SubgraphSolver<Graph, Config>::optimize(SubgraphPreconditioner& system) const {
|
|
VectorConfig zeros = system.zero();
|
|
|
|
// Solve the subgraph PCG
|
|
VectorConfig ybar = conjugateGradients<SubgraphPreconditioner, VectorConfig,
|
|
Errors> (system, zeros, verbose_, epsilon_, epsilon_abs_, maxIterations_);
|
|
VectorConfig xbar = system.x(ybar);
|
|
return xbar;
|
|
}
|
|
|
|
}
|