gtsam/geometry/tests/testFundamental.cpp

113 lines
3.6 KiB
C++

/*
* testFundamental.cpp
* @brief try tensor expressions based on http://www.gps.caltech.edu/~walter/FTensor/FTensor.pdf
* Created on: Feb 13, 2010
* @author: Frank Dellaert
*/
#include <iostream>
#include <boost/foreach.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
using namespace boost::assign;
#include <gtsam/CppUnitLite/TestHarness.h>
#include <gtsam/geometry/tensors.h>
#include <gtsam/geometry/tensorInterface.h>
#include <gtsam/geometry/projectiveGeometry.h>
using namespace std;
using namespace gtsam;
using namespace tensors;
/* ************************************************************************* */
// Indices
Index<3, 'a'> a;
Index<3, 'b'> b;
Index<4, 'A'> A;
Index<4, 'B'> B;
/* ************************************************************************* */
TEST( Tensors, FundamentalMatrix)
{
double f[3][3] = { { 1, 0, 0 }, { 1, 2, 3 }, { 1, 2, 3 } };
FundamentalMatrix F(f);
Point2h p = point2h(1, 2, 3); // point p in view one
Point2h q = point2h(14, -1, 0); // point q in view two
// points p and q are in correspondence
CHECK(F(a,b)*p(a)*q(b) == 0)
// in detail, l1(b)*q(b)==0
Line2h l1 = line2h(1, 14, 14);
CHECK(F(a,b)*p(a) == l1(b))
CHECK(l1(b)*q(b) == 0); // q is on line l1
// and l2(a)*p(a)==0
Line2h l2 = line2h(13, -2, -3);
CHECK(F(a,b)*q(b) == l2(a))
CHECK(l2(a)*p(a) == 0); // p is on line l2
}
/* ************************************************************************* */
// Stereo setup, -1,1
/* ************************************************************************* */
// t points towards origin
double left__[4][3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 }, { +1, 0, 0 } };
double right_[4][3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 }, { -1, 0, 0 } };
//double right_[4][3] = { { cos(0.1), -sin(0.1), 0 }, { sin(0.1), cos(0.1), 0 }, { 0, 0, 1 }, { -1, 0, 0 } };
ProjectiveCamera ML(left__), MR(right_);
// Cube
Point3h P1 = point3h(-1, -1, 3 - 1, 1);
Point3h P2 = point3h(-1, -1, 3 + 1, 1);
Point3h P3 = point3h(-1, +1, 3 - 1, 1);
Point3h P4 = point3h(-1, +1, 3 + 1, 1);
Point3h P5 = point3h(+1, -1, 3 - 1, 1);
Point3h P6 = point3h(+1, -1, 3 + 1, 1);
Point3h P7 = point3h(+1, +1, 3 - 1, 1);
Point3h P8 = point3h(+1, +1, 3 + 1, 1);
/* ************************************************************************* */
//TEST( Tensors, FundamentalMatrix2)
//{
// // The matrix A is rank-deficient, but as checked below this one
// // out of many in the zero-error subspace is a correct F for the rig
// double f[3][3] = {{-0, 5.06764, -0.840876}
// ,{-4.62947, 1.25142, 1.99583e+16}
// ,{-1.70847, -1.99583e+16, 1}
// };
// FundamentalMatrix F(f);
//
// list<Point3h> points;
// Point3h P9 = point3h(-2,3,4,1);
// Point3h P10 = point3h(1,1,5,1);
// points += P1, P2, P3, P4, P5, P6, P7, P8, P9, P10;
// list<Correspondence> correspondences;
// BOOST_FOREACH(const Point3h& P, points) {
// print(P(A));
// Correspondence p(ML(a,A)*P(A), MR(b,A)*P(A));
// print(ML(a,A)*P(A));print(MR(b,A)*P(A));
//// DOUBLES_EQUAL(0,F(a,b) * p.first(a) * p.second(b),1e-9); // checked here for cube
// correspondences += p;
// }
//
// // let's check it for another arbitrary point
// Point2h left(ML(a,A)*P9(A)), right(MR(b,A)*P9(A));
//// DOUBLES_EQUAL(0,F(a,b) * left(a) * right(b),1e-9);
//
// FundamentalMatrix actual = estimateFundamentalMatrix(correspondences);
// CHECK(assert_equality(F(a,b),actual(a,b)*(1.0/actual(2,2)),0.1));
//}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */