102 lines
3.3 KiB
C++
102 lines
3.3 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testPose2Prior.cpp
|
|
* @brief Unit tests for Pose2Prior Class
|
|
* @authors Frank Dellaert, Viorela Ila
|
|
**/
|
|
|
|
#include <gtsam/CppUnitLite/TestHarness.h>
|
|
|
|
#define GTSAM_MAGIC_KEY
|
|
|
|
#include <gtsam/base/LieVector.h>
|
|
#include <gtsam/base/numericalDerivative.h>
|
|
#include <gtsam/slam/pose2SLAM.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
// Common measurement covariance
|
|
static double sx=0.5, sy=0.5,st=0.1;
|
|
static SharedGaussian sigmas = sharedSigmas(Vector_(3,sx,sy,st));
|
|
|
|
/* ************************************************************************* */
|
|
// Very simple test establishing Ax-b \approx z-h(x)
|
|
TEST( Pose2Prior, error )
|
|
{
|
|
// Choose a linearization point
|
|
Pose2 p1(1, 0, 0); // robot at (1,0)
|
|
Pose2Values x0;
|
|
x0.insert(1, p1);
|
|
|
|
// Create factor
|
|
Pose2Prior factor(1, p1, sigmas);
|
|
|
|
// Actual linearization
|
|
Ordering ordering(*x0.orderingArbitrary());
|
|
boost::shared_ptr<GaussianFactor> linear = factor.linearize(x0, ordering);
|
|
|
|
// Check error at x0, i.e. delta = zero !
|
|
VectorValues delta(x0.dims(ordering));
|
|
delta.makeZero();
|
|
delta[ordering["x1"]] = zero(3);
|
|
Vector error_at_zero = Vector_(3,0.0,0.0,0.0);
|
|
CHECK(assert_equal(error_at_zero,factor.whitenedError(x0)));
|
|
CHECK(assert_equal(-error_at_zero,linear->error_vector(delta)));
|
|
|
|
// Check error after increasing p2
|
|
VectorValues addition(x0.dims(ordering));
|
|
addition.makeZero();
|
|
addition[ordering["x1"]] = Vector_(3, 0.1, 0.0, 0.0);
|
|
VectorValues plus = delta + addition;
|
|
Pose2Values x1 = x0.expmap(plus, ordering);
|
|
Vector error_at_plus = Vector_(3,0.1/sx,0.0,0.0); // h(x)-z = 0.1 !
|
|
CHECK(assert_equal(error_at_plus,factor.whitenedError(x1)));
|
|
CHECK(assert_equal(error_at_plus,linear->error_vector(plus)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// common Pose2Prior for tests below
|
|
static Pose2 prior(2,2,M_PI_2);
|
|
static Pose2Prior factor(1,prior, sigmas);
|
|
|
|
/* ************************************************************************* */
|
|
// The error |A*dx-b| approximates (h(x0+dx)-z) = -error_vector
|
|
// Hence i.e., b = approximates z-h(x0) = error_vector(x0)
|
|
LieVector h(const Pose2& p1) {
|
|
return LieVector(sigmas->whiten(factor.evaluateError(p1)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose2Prior, linearize )
|
|
{
|
|
// Choose a linearization point at ground truth
|
|
Pose2Values x0;
|
|
x0.insert(1,prior);
|
|
|
|
// Actual linearization
|
|
Ordering ordering(*x0.orderingArbitrary());
|
|
boost::shared_ptr<GaussianFactor> actual = factor.linearize(x0, ordering);
|
|
|
|
// Test with numerical derivative
|
|
Matrix numericalH = numericalDerivative11(h, prior, 1e-5);
|
|
CHECK(assert_equal(numericalH,actual->getA(actual->find(ordering["x1"]))));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|