gtsam/gtsam_unstable/examples/ConcurrentCalibration.cpp

159 lines
5.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ConcurrentCalibration.cpp
* @brief First step towards estimating monocular calibration in concurrent
* filter/smoother framework. To start with, just batch LM.
* @date June 11, 2014
* @author Chris Beall
*/
#include <gtsam/geometry/Pose3.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/utilities.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam/slam/GeneralSFMFactor.h>
#include <gtsam/slam/dataset.h>
#include <string>
#include <fstream>
#include <iostream>
#include <boost/lexical_cast.hpp>
using namespace std;
using namespace gtsam;
using symbol_shorthand::K;
using symbol_shorthand::L;
using symbol_shorthand::X;
int main(int argc, char** argv){
Values initial_estimate;
NonlinearFactorGraph graph;
const auto model = noiseModel::Isotropic::Sigma(2,1);
string calibration_loc = findExampleDataFile("VO_calibration00s.txt");
string pose_loc = findExampleDataFile("VO_camera_poses00s.txt");
string factor_loc = findExampleDataFile("VO_stereo_factors00s.txt");
//read camera calibration info from file
// focal lengths fx, fy, skew s, principal point u0, v0, baseline b
double fx, fy, s, u0, v0, b;
ifstream calibration_file(calibration_loc.c_str());
cout << "Reading calibration info" << endl;
calibration_file >> fx >> fy >> s >> u0 >> v0 >> b;
//create stereo camera calibration object
const Cal3_S2 true_K(fx,fy,s,u0,v0);
const Cal3_S2 noisy_K(fx*1.2,fy*1.2,s,u0-10,v0+10);
initial_estimate.insert(K(0), noisy_K);
auto calNoise = noiseModel::Diagonal::Sigmas((Vector(5) << 500, 500, 1e-5, 100, 100).finished());
graph.addPrior(K(0), noisy_K, calNoise);
ifstream pose_file(pose_loc.c_str());
cout << "Reading camera poses" << endl;
int pose_id;
MatrixRowMajor m(4,4);
//read camera pose parameters and use to make initial estimates of camera poses
while (pose_file >> pose_id) {
for (int i = 0; i < 16; i++) {
pose_file >> m.data()[i];
}
initial_estimate.insert(Symbol('x', pose_id), Pose3(m));
}
auto poseNoise = noiseModel::Isotropic::Sigma(6, 0.01);
graph.addPrior(Symbol('x', pose_id), Pose3(m), poseNoise);
// camera and landmark keys
size_t x, l;
// pixel coordinates uL, uR, v (same for left/right images due to rectification)
// landmark coordinates X, Y, Z in camera frame, resulting from triangulation
double uL, uR, v, _X, Y, Z;
ifstream factor_file(factor_loc.c_str());
cout << "Reading stereo factors" << endl;
//read stereo measurement details from file and use to create and add GenericStereoFactor objects to the graph representation
while (factor_file >> x >> l >> uL >> uR >> v >> _X >> Y >> Z) {
// graph.emplace_shared<GenericStereoFactor<Pose3, Point3> >(StereoPoint2(uL, uR, v), model, X(x), L(l), K);
graph.emplace_shared<GeneralSFMFactor2<Cal3_S2> >(Point2(uL,v), model, X(x), L(l), K(0));
//if the landmark variable included in this factor has not yet been added to the initial variable value estimate, add it
if (!initial_estimate.exists(L(l))) {
Pose3 camPose = initial_estimate.at<Pose3>(X(x));
//transformFrom() transforms the input Point3 from the camera pose space, camPose, to the global space
Point3 worldPoint = camPose.transformFrom(Point3(_X, Y, Z));
initial_estimate.insert(L(l), worldPoint);
}
}
Pose3 first_pose = initial_estimate.at<Pose3>(Symbol('x',1));
//constrain the first pose such that it cannot change from its original value during optimization
// NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
// QR is much slower than Cholesky, but numerically more stable
graph.emplace_shared<NonlinearEquality<Pose3> >(Symbol('x',1),first_pose);
cout << "Optimizing" << endl;
LevenbergMarquardtParams params;
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
params.verbosity = NonlinearOptimizerParams::ERROR;
//create Levenberg-Marquardt optimizer to optimize the factor graph
LevenbergMarquardtOptimizer optimizer(graph, initial_estimate,params);
// Values result = optimizer.optimize();
string K_values_file = "K_values.txt";
ofstream stream_K(K_values_file.c_str());
double currentError;
stream_K << optimizer.iterations() << " " << optimizer.values().at<Cal3_S2>(K(0)).vector().transpose() << endl;
// Iterative loop
do {
// Do next iteration
currentError = optimizer.error();
optimizer.iterate();
stream_K << optimizer.iterations() << " " << optimizer.values().at<Cal3_S2>(K(0)).vector().transpose() << endl;
if(params.verbosity >= NonlinearOptimizerParams::ERROR) cout << "newError: " << optimizer.error() << endl;
} while(optimizer.iterations() < params.maxIterations &&
!checkConvergence(params.relativeErrorTol, params.absoluteErrorTol,
params.errorTol, currentError, optimizer.error(), params.verbosity));
Values result = optimizer.values();
cout << "Final result sample:" << endl;
Values pose_values = utilities::allPose3s(result);
pose_values.print("Final camera poses:\n");
result.at<Cal3_S2>(K(0)).print("Final K\n");
noisy_K.print("Initial noisy K\n");
true_K.print("Initial correct K\n");
return 0;
}