67 lines
1.7 KiB
C++
67 lines
1.7 KiB
C++
/**
|
|
* @file GaussianBayesNet.h
|
|
* @brief Chordal Bayes Net, the result of eliminating a factor graph
|
|
* @brief GaussianBayesNet
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
// \callgraph
|
|
|
|
#pragma once
|
|
|
|
#include <list>
|
|
|
|
#include "GaussianConditional.h"
|
|
#include "BayesNet.h"
|
|
|
|
namespace gtsam {
|
|
|
|
/** A Bayes net made from linear-Gaussian densities */
|
|
typedef BayesNet<GaussianConditional> GaussianBayesNet;
|
|
|
|
/** Create a scalar Gaussian */
|
|
GaussianBayesNet scalarGaussian(const std::string& key, double mu=0.0, double sigma=1.0);
|
|
|
|
/** Create a simple Gaussian on a single multivariate variable */
|
|
GaussianBayesNet simpleGaussian(const std::string& key, const Vector& mu, double sigma=1.0);
|
|
|
|
/**
|
|
* Add a conditional node with one parent
|
|
* |Rx+Sy-d|
|
|
*/
|
|
void push_front(GaussianBayesNet& bn, const std::string& key, Vector d, Matrix R,
|
|
const std::string& name1, Matrix S, Vector sigmas);
|
|
|
|
/**
|
|
* Add a conditional node with two parents
|
|
* |Rx+Sy+Tz-d|
|
|
*/
|
|
void push_front(GaussianBayesNet& bn, const std::string& key, Vector d, Matrix R,
|
|
const std::string& name1, Matrix S, const std::string& name2, Matrix T, Vector sigmas);
|
|
|
|
/**
|
|
* optimize, i.e. return x = inv(R)*d
|
|
*/
|
|
VectorConfig optimize(const GaussianBayesNet&);
|
|
|
|
/*
|
|
* Backsubstitute
|
|
* (R*x)./sigmas = y by solving x=inv(R)*(y.*sigmas)
|
|
*/
|
|
VectorConfig backSubstitute(const GaussianBayesNet& bn, const VectorConfig& y);
|
|
|
|
/*
|
|
* Transpose Backsubstitute
|
|
* gy=inv(L)*gx by solving L*gy=gx.
|
|
* gy=inv(R'*inv(Sigma))*gx
|
|
* gz'*R'=gx', gy = gz.*sigmas
|
|
*/
|
|
VectorConfig backSubstituteTranspose(const GaussianBayesNet& bn, const VectorConfig& gx);
|
|
|
|
/**
|
|
* Return (dense) upper-triangular matrix representation
|
|
*/
|
|
std::pair<Matrix, Vector> matrix(const GaussianBayesNet&);
|
|
|
|
} /// namespace gtsam
|