184 lines
5.7 KiB
Matlab
184 lines
5.7 KiB
Matlab
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
% Atlanta, Georgia 30332-0415
|
|
% All Rights Reserved
|
|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
%
|
|
% See LICENSE for the license information
|
|
%
|
|
% @brief A simple visual SLAM example for structure from motion
|
|
% @author Duy-Nguyen Ta
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
clear
|
|
|
|
%% Data Options
|
|
TRIANGLE = false;
|
|
NCAMERAS = 20;
|
|
SHOW_IMAGES = false;
|
|
|
|
%% iSAM Options
|
|
HARD_CONSTRAINT = false;
|
|
POINT_PRIORS = false;
|
|
BATCH_INIT = true;
|
|
REORDER_INTERVAL=10;
|
|
ALWAYS_RELINEARIZE = false;
|
|
|
|
%% Display Options
|
|
SAVE_GRAPH = false;
|
|
PRINT_STATS = true;
|
|
DRAW_INTERVAL = 20;
|
|
CAMERA_INTERVAL = 1;
|
|
DRAW_TRUE_POSES = false;
|
|
SAVE_FIGURES = false;
|
|
SAVE_GRAPHS = false;
|
|
|
|
%% Generate simulated data
|
|
if TRIANGLE % Create a triangle target, just 3 points on a plane
|
|
nPoints = 3;
|
|
r = 10;
|
|
for j=1:nPoints
|
|
theta = (j-1)*2*pi/nPoints;
|
|
points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]');
|
|
end
|
|
else % 3D landmarks as vertices of a cube
|
|
nPoints = 8;
|
|
points = {gtsamPoint3([10 10 10]'),...
|
|
gtsamPoint3([-10 10 10]'),...
|
|
gtsamPoint3([-10 -10 10]'),...
|
|
gtsamPoint3([10 -10 10]'),...
|
|
gtsamPoint3([10 10 -10]'),...
|
|
gtsamPoint3([-10 10 -10]'),...
|
|
gtsamPoint3([-10 -10 -10]'),...
|
|
gtsamPoint3([10 -10 -10]')};
|
|
end
|
|
|
|
%% Create camera cameras on a circle around the triangle
|
|
height = 10; r = 40;
|
|
K = gtsamCal3_S2(500,500,0,640/2,480/2);
|
|
for i=1:NCAMERAS
|
|
theta = (i-1)*2*pi/NCAMERAS;
|
|
t = gtsamPoint3([r*cos(theta), r*sin(theta), height]');
|
|
cameras{i} = gtsamSimpleCamera_lookat(t, gtsamPoint3, gtsamPoint3([0,0,1]'), K);
|
|
if SHOW_IMAGES % show images
|
|
figure(2+i);clf;hold on
|
|
set(2+i,'NumberTitle','off','Name',sprintf('Camera %d',i));
|
|
for j=1:nPoints
|
|
zij = cameras{i}.project(points{j});
|
|
plot(zij.x,zij.y,'*');
|
|
axis([1 640 1 480]);
|
|
end
|
|
end
|
|
end
|
|
odometry = cameras{1}.pose.between(cameras{2}.pose);
|
|
|
|
|
|
%% Set Noise parameters
|
|
poseNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
|
|
odometryNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
|
|
pointNoise = gtsamSharedNoiseModel_Sigma(3, 0.1);
|
|
measurementNoise = gtsamSharedNoiseModel_Sigma(2, 1.0);
|
|
|
|
%% Initialize iSAM
|
|
isam = visualSLAMISAM(REORDER_INTERVAL);
|
|
newFactors = visualSLAMGraph;
|
|
initialEstimates = visualSLAMValues;
|
|
i1 = symbol('x',1);
|
|
camera1 = cameras{1};
|
|
pose1 = camera1.pose;
|
|
if HARD_CONSTRAINT % add hard constraint
|
|
newFactors.addPoseConstraint(i1,pose1);
|
|
else
|
|
newFactors.addPosePrior(i1,pose1, poseNoise);
|
|
end
|
|
initialEstimates.insertPose(i1,pose1);
|
|
% Add visual measurement factors from first pose
|
|
for j=1:nPoints
|
|
jj = symbol('l',j);
|
|
if POINT_PRIORS % add point priors
|
|
newFactors.addPointPrior(jj, points{j}, pointNoise);
|
|
end
|
|
zij = camera1.project(points{j});
|
|
newFactors.addMeasurement(zij, measurementNoise, i1, jj, K);
|
|
initialEstimates.insertPoint(jj, points{j});
|
|
end
|
|
|
|
%% Run iSAM Loop
|
|
figure(1);clf;hold on;
|
|
set(1,'NumberTitle','off','Name','iSAM timing');
|
|
for i=2:NCAMERAS
|
|
|
|
%% Add odometry
|
|
newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, odometryNoise);
|
|
|
|
%% Add visual measurement factors
|
|
for j=1:nPoints
|
|
zij = cameras{i}.project(points{j});
|
|
newFactors.addMeasurement(zij, measurementNoise, symbol('x',i), symbol('l',j), K);
|
|
end
|
|
|
|
%% Initial estimates for the new pose. Also initialize points while in the first frame.
|
|
%TODO: this might be suboptimal since "result" is not the fully optimized result
|
|
if (i==2), prevPose = cameras{1}.pose;
|
|
else, prevPose = result.pose(symbol('x',i-1)); end
|
|
initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry));
|
|
|
|
%% Update ISAM
|
|
if BATCH_INIT & (i==2) % Do a full optimize for first two poses
|
|
initialEstimates
|
|
fullyOptimized = newFactors.optimize(initialEstimates)
|
|
initialEstimates = fullyOptimized;
|
|
end
|
|
figure(1);tic;
|
|
isam.update(newFactors, initialEstimates);
|
|
t=toc; plot(i,t,'r.'); tic
|
|
result = isam.estimate();
|
|
t=toc; plot(i,t,'g.');
|
|
if ALWAYS_RELINEARIZE % re-linearize
|
|
isam.reorder_relinearize();
|
|
end
|
|
|
|
if SAVE_GRAPH
|
|
isam.saveGraph(sprintf('VisualiSAM.dot',i));
|
|
end
|
|
if PRINT_STATS
|
|
isam.printStats();
|
|
end
|
|
if mod(i,DRAW_INTERVAL)==0
|
|
%% Plot results
|
|
tic
|
|
h=figure(2);clf
|
|
set(1,'NumberTitle','off','Name','Visual iSAM');
|
|
hold on;
|
|
for j=1:size(points,2)
|
|
P = isam.marginalCovariance(symbol('l',j));
|
|
point_j = result.point(symbol('l',j));
|
|
plot3(point_j.x, point_j.y, point_j.z,'marker','o');
|
|
covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
|
|
end
|
|
for ii=1:CAMERA_INTERVAL:i
|
|
P = isam.marginalCovariance(symbol('x',ii));
|
|
pose_ii = result.pose(symbol('x',ii));
|
|
plotPose3(pose_ii,P,10);
|
|
if DRAW_TRUE_POSES % show ground truth
|
|
plotPose3(cameras{ii}.pose,0.001*eye(6),10);
|
|
end
|
|
end
|
|
axis([-40 40 -40 40 -10 20]);axis equal
|
|
view(3)
|
|
colormap('hot')
|
|
figure(2);
|
|
t=toc;
|
|
if DRAW_INTERVAL~=NCAMERAS, plot(i,t,'b.'); end
|
|
if SAVE_FIGURES
|
|
print(h,'-dpng',sprintf('VisualiSAM%03d.png',i));
|
|
end
|
|
if SAVE_GRAPHS
|
|
isam.saveGraph(sprintf('VisualiSAM%03d.dot',i));
|
|
end
|
|
end
|
|
|
|
%% Reset newFactors and initialEstimates to prepare for the next update
|
|
newFactors = visualSLAMGraph;
|
|
initialEstimates = visualSLAMValues;
|
|
end |