138 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			138 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file PlanarSLAMExample_selfcontained.cpp
 | 
						|
 * @brief Simple robotics example with all typedefs internal to this script.
 | 
						|
 * @author Alex Cunningham
 | 
						|
 */
 | 
						|
 | 
						|
// add in headers for specific factors
 | 
						|
#include <gtsam/slam/PriorFactor.h>
 | 
						|
#include <gtsam/slam/BetweenFactor.h>
 | 
						|
#include <gtsam/slam/BearingRangeFactor.h>
 | 
						|
 | 
						|
// for all nonlinear keys
 | 
						|
#include <gtsam/nonlinear/Symbol.h>
 | 
						|
 | 
						|
// implementations for structures - needed if self-contained, and these should be included last
 | 
						|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
						|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
						|
#include <gtsam/nonlinear/Marginals.h>
 | 
						|
 | 
						|
// for modeling measurement uncertainty - all models included here
 | 
						|
#include <gtsam/linear/NoiseModel.h>
 | 
						|
 | 
						|
// for points and poses
 | 
						|
#include <gtsam/geometry/Point2.h>
 | 
						|
#include <gtsam/geometry/Pose2.h>
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
/**
 | 
						|
 * In this version of the system we make the following assumptions:
 | 
						|
 *  - All values are axis aligned
 | 
						|
 *  - Robot poses are facing along the X axis (horizontal, to the right in images)
 | 
						|
 *  - We have bearing and range information for measurements
 | 
						|
 *  - We have full odometry for measurements
 | 
						|
 *  - The robot and landmarks are on a grid, moving 2 meters each step
 | 
						|
 *  - Landmarks are 2 meters away from the robot trajectory
 | 
						|
 */
 | 
						|
int main(int argc, char** argv) {
 | 
						|
	// create keys for variables
 | 
						|
	Symbol i1('x',1), i2('x',2), i3('x',3);
 | 
						|
	Symbol j1('l',1), j2('l',2);
 | 
						|
 | 
						|
	// create graph container and add factors to it
 | 
						|
	NonlinearFactorGraph graph;
 | 
						|
 | 
						|
	/* add prior  */
 | 
						|
	// gaussian for prior
 | 
						|
	SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
 | 
						|
	Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
 | 
						|
	PriorFactor<Pose2> posePrior(i1, priorMean, priorNoise); // create the factor
 | 
						|
	graph.add(posePrior);  // add the factor to the graph
 | 
						|
 | 
						|
	/* add odometry */
 | 
						|
	// general noisemodel for odometry
 | 
						|
	SharedDiagonal odometryNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
 | 
						|
	Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
 | 
						|
	// create between factors to represent odometry
 | 
						|
	BetweenFactor<Pose2> odom12(i1, i2, odometry, odometryNoise);
 | 
						|
	BetweenFactor<Pose2> odom23(i2, i3, odometry, odometryNoise);
 | 
						|
	graph.add(odom12); // add both to graph
 | 
						|
	graph.add(odom23);
 | 
						|
 | 
						|
	/* add measurements */
 | 
						|
	// general noisemodel for measurements
 | 
						|
	SharedDiagonal measurementNoise = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.2));
 | 
						|
 | 
						|
	// create the measurement values - indices are (pose id, landmark id)
 | 
						|
	Rot2 bearing11 = Rot2::fromDegrees(45),
 | 
						|
		 bearing21 = Rot2::fromDegrees(90),
 | 
						|
		 bearing32 = Rot2::fromDegrees(90);
 | 
						|
	double range11 = sqrt(4.0+4.0),
 | 
						|
		   range21 = 2.0,
 | 
						|
		   range32 = 2.0;
 | 
						|
 | 
						|
	// create bearing/range factors
 | 
						|
	BearingRangeFactor<Pose2, Point2> meas11(i1, j1, bearing11, range11, measurementNoise);
 | 
						|
	BearingRangeFactor<Pose2, Point2> meas21(i2, j1, bearing21, range21, measurementNoise);
 | 
						|
	BearingRangeFactor<Pose2, Point2> meas32(i3, j2, bearing32, range32, measurementNoise);
 | 
						|
 | 
						|
	// add the factors
 | 
						|
	graph.add(meas11);
 | 
						|
	graph.add(meas21);
 | 
						|
	graph.add(meas32);
 | 
						|
 | 
						|
	graph.print("Full Graph");
 | 
						|
 | 
						|
	// initialize to noisy points
 | 
						|
	Values initial;
 | 
						|
	initial.insert(i1, Pose2(0.5, 0.0, 0.2));
 | 
						|
	initial.insert(i2, Pose2(2.3, 0.1,-0.2));
 | 
						|
	initial.insert(i3, Pose2(4.1, 0.1, 0.1));
 | 
						|
	initial.insert(j1, Point2(1.8, 2.1));
 | 
						|
	initial.insert(j2, Point2(4.1, 1.8));
 | 
						|
 | 
						|
	initial.print("initial estimate");
 | 
						|
 | 
						|
	// optimize using Levenberg-Marquardt optimization with an ordering from colamd
 | 
						|
 | 
						|
	// first using sequential elimination
 | 
						|
	LevenbergMarquardtParams lmParams;
 | 
						|
	lmParams.linearSolverType = LevenbergMarquardtParams::SEQUENTIAL_CHOLESKY;
 | 
						|
	Values resultSequential = LevenbergMarquardtOptimizer(graph, initial, lmParams).optimize();
 | 
						|
	resultSequential.print("final result (solved with a sequential solver)");
 | 
						|
 | 
						|
	// then using multifrontal, advanced interface
 | 
						|
	// Note that we keep the original optimizer object so we can use the COLAMD
 | 
						|
	// ordering it computes.
 | 
						|
	LevenbergMarquardtOptimizer optimizer(graph, initial);
 | 
						|
	Values resultMultifrontal = optimizer.optimize();
 | 
						|
	resultMultifrontal.print("final result (solved with a multifrontal solver)");
 | 
						|
 | 
						|
  // Print marginals covariances for all variables
 | 
						|
	Marginals marginals(graph, resultMultifrontal, Marginals::CHOLESKY);
 | 
						|
  print(marginals.marginalCovariance(i1), "i1 covariance");
 | 
						|
  print(marginals.marginalCovariance(i2), "i2 covariance");
 | 
						|
  print(marginals.marginalCovariance(i3), "i3 covariance");
 | 
						|
  print(marginals.marginalCovariance(j1), "j1 covariance");
 | 
						|
  print(marginals.marginalCovariance(j2), "j2 covariance");
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 |