gtsam/gtsam/sfm/sfm.i

363 lines
14 KiB
OpenEdge ABL

//*************************************************************************
// sfm
//*************************************************************************
namespace gtsam {
#include <gtsam/sfm/SfmTrack.h>
class SfmTrack2d {
std::vector<gtsam::SfmMeasurement> measurements;
SfmTrack2d();
SfmTrack2d(const std::vector<gtsam::SfmMeasurement>& measurements);
size_t numberMeasurements() const;
gtsam::SfmMeasurement measurement(size_t idx) const;
pair<size_t, size_t> siftIndex(size_t idx) const;
void addMeasurement(size_t idx, const gtsam::Point2& m);
bool hasUniqueCameras() const;
Eigen::MatrixX2d measurementMatrix() const;
Eigen::VectorXi indexVector() const;
};
virtual class SfmTrack : gtsam::SfmTrack2d {
SfmTrack();
SfmTrack(const gtsam::Point3& pt);
const Point3& point3() const;
Point3 p;
double r;
double g;
double b;
// enabling serialization functionality
void serialize() const;
// enabling function to compare objects
bool equals(const gtsam::SfmTrack& expected, double tol) const;
};
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/sfm/SfmData.h>
class SfmData {
SfmData();
static gtsam::SfmData FromBundlerFile(string filename);
static gtsam::SfmData FromBalFile(string filename);
std::vector<gtsam::SfmTrack>& trackList() const;
std::vector<gtsam::PinholeCamera<gtsam::Cal3Bundler>>& cameraList() const;
void addTrack(const gtsam::SfmTrack& t);
void addCamera(const gtsam::SfmCamera& cam);
size_t numberTracks() const;
size_t numberCameras() const;
gtsam::SfmTrack& track(size_t idx) const;
gtsam::PinholeCamera<gtsam::Cal3Bundler>& camera(size_t idx) const;
gtsam::NonlinearFactorGraph generalSfmFactors(
const gtsam::SharedNoiseModel& model =
gtsam::noiseModel::Isotropic::Sigma(2, 1.0)) const;
gtsam::NonlinearFactorGraph sfmFactorGraph(
const gtsam::SharedNoiseModel& model =
gtsam::noiseModel::Isotropic::Sigma(2, 1.0),
size_t fixedCamera = 0, size_t fixedPoint = 0) const;
// enabling serialization functionality
void serialize() const;
// enabling function to compare objects
bool equals(const gtsam::SfmData& expected, double tol) const;
};
gtsam::SfmData readBal(string filename);
bool writeBAL(string filename, gtsam::SfmData& data);
gtsam::Values initialCamerasEstimate(const gtsam::SfmData& db);
gtsam::Values initialCamerasAndPointsEstimate(const gtsam::SfmData& db);
#include <gtsam/sfm/TransferFactor.h>
#include <gtsam/geometry/FundamentalMatrix.h>
template <F = {gtsam::SimpleFundamentalMatrix, gtsam::FundamentalMatrix}>
virtual class TransferFactor : gtsam::NoiseModelFactor {
TransferFactor(gtsam::EdgeKey edge1, gtsam::EdgeKey edge2,
const std::vector<std::tuple<gtsam::Point2, gtsam::Point2, gtsam::Point2>>& triplets,
const gtsam::noiseModel::Base* model = nullptr);
};
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/Cal3f.h>
#include <gtsam/geometry/Cal3Bundler.h>
template <K = {gtsam::Cal3_S2, gtsam::Cal3f, gtsam::Cal3Bundler}>
virtual class EssentialTransferFactor : gtsam::NoiseModelFactor {
EssentialTransferFactor(gtsam::EdgeKey edge1, gtsam::EdgeKey edge2,
const std::vector<std::tuple<gtsam::Point2, gtsam::Point2, gtsam::Point2>>& triplets,
const K* calibration,
const gtsam::noiseModel::Base* model = nullptr);
};
template <K = {gtsam::Cal3_S2, gtsam::Cal3f, gtsam::Cal3Bundler}>
virtual class EssentialTransferFactorK : gtsam::NoiseModelFactor {
EssentialTransferFactorK(gtsam::EdgeKey edge1, gtsam::EdgeKey edge2,
const std::vector<std::tuple<gtsam::Point2, gtsam::Point2, gtsam::Point2>>& triplets,
const gtsam::noiseModel::Base* model = nullptr);
};
#include <gtsam/sfm/ShonanFactor.h>
virtual class ShonanFactor3 : gtsam::NoiseModelFactor {
ShonanFactor3(size_t key1, size_t key2, const gtsam::Rot3& R12, size_t p);
ShonanFactor3(size_t key1, size_t key2, const gtsam::Rot3& R12, size_t p,
gtsam::noiseModel::Base* model);
gtsam::Vector evaluateError(const gtsam::SOn& Q1, const gtsam::SOn& Q2);
};
#include <gtsam/sfm/BinaryMeasurement.h>
template <T>
class BinaryMeasurement {
BinaryMeasurement(size_t key1, size_t key2, const T& measured,
const gtsam::noiseModel::Base* model);
size_t key1() const;
size_t key2() const;
T measured() const;
gtsam::noiseModel::Base* noiseModel() const;
};
typedef gtsam::BinaryMeasurement<gtsam::Unit3> BinaryMeasurementUnit3;
typedef gtsam::BinaryMeasurement<gtsam::Rot3> BinaryMeasurementRot3;
typedef gtsam::BinaryMeasurement<gtsam::Point3> BinaryMeasurementPoint3;
// Used in Matlab wrapper
class BinaryMeasurementsUnit3 {
BinaryMeasurementsUnit3();
size_t size() const;
gtsam::BinaryMeasurement<gtsam::Unit3> at(size_t idx) const;
void push_back(const gtsam::BinaryMeasurement<gtsam::Unit3>& measurement);
};
// Used in Matlab wrapper
class BinaryMeasurementsPoint3 {
BinaryMeasurementsPoint3();
size_t size() const;
gtsam::BinaryMeasurement<gtsam::Point3> at(size_t idx) const;
void push_back(const gtsam::BinaryMeasurement<gtsam::Point3>& measurement);
};
// Used in Matlab wrapper
class BinaryMeasurementsRot3 {
BinaryMeasurementsRot3();
size_t size() const;
gtsam::BinaryMeasurement<gtsam::Rot3> at(size_t idx) const;
void push_back(const gtsam::BinaryMeasurement<gtsam::Rot3>& measurement);
};
#include <gtsam/slam/dataset.h>
#include <gtsam/sfm/ShonanAveraging.h>
template <d={2, 3}>
class ShonanAveragingParameters {
ShonanAveragingParameters(const gtsam::LevenbergMarquardtParams& lm);
ShonanAveragingParameters(const gtsam::LevenbergMarquardtParams& lm,
string method);
gtsam::LevenbergMarquardtParams getLMParams() const;
void setOptimalityThreshold(double value);
double getOptimalityThreshold() const;
void setAnchor(size_t index, const gtsam::This::Rot& value);
pair<size_t, gtsam::This::Rot> getAnchor();
void setAnchorWeight(double value);
double getAnchorWeight() const;
void setKarcherWeight(double value);
double getKarcherWeight() const;
void setGaugesWeight(double value);
double getGaugesWeight() const;
void setUseHuber(bool value);
bool getUseHuber() const;
void setCertifyOptimality(bool value);
bool getCertifyOptimality() const;
};
// NOTE(Varun): Not templated because each class has specializations defined.
class ShonanAveraging2 {
ShonanAveraging2(string g2oFile);
ShonanAveraging2(string g2oFile,
const gtsam::ShonanAveragingParameters2& parameters);
ShonanAveraging2(const gtsam::BetweenFactorPose2s& factors,
const gtsam::ShonanAveragingParameters2& parameters);
// Query properties
size_t nrUnknowns() const;
size_t numberMeasurements() const;
gtsam::Rot2 measured(size_t i);
gtsam::KeyVector keys(size_t i);
// gtsam::Matrix API (advanced use, debugging)
gtsam::Matrix denseD() const;
gtsam::Matrix denseQ() const;
gtsam::Matrix denseL() const;
// gtsam::Matrix computeLambda_(gtsam::Matrix S) const;
gtsam::Matrix computeLambda_(const gtsam::Values& values) const;
gtsam::Matrix computeA_(const gtsam::Values& values) const;
double computeMinEigenValue(const gtsam::Values& values) const;
gtsam::Values initializeWithDescent(size_t p, const gtsam::Values& values,
const gtsam::Vector& minEigenVector,
double minEigenValue) const;
// Advanced API
gtsam::NonlinearFactorGraph buildGraphAt(size_t p) const;
gtsam::Values initializeRandomlyAt(size_t p) const;
double costAt(size_t p, const gtsam::Values& values) const;
pair<double, gtsam::Vector> computeMinEigenVector(const gtsam::Values& values) const;
bool checkOptimality(const gtsam::Values& values) const;
gtsam::LevenbergMarquardtOptimizer* createOptimizerAt(
size_t p, const gtsam::Values& initial);
// gtsam::Values tryOptimizingAt(size_t p) const;
gtsam::Values tryOptimizingAt(size_t p, const gtsam::Values& initial) const;
gtsam::Values projectFrom(size_t p, const gtsam::Values& values) const;
gtsam::Values roundSolution(const gtsam::Values& values) const;
// Basic API
double cost(const gtsam::Values& values) const;
gtsam::Values initializeRandomly() const;
pair<gtsam::Values, double> run(const gtsam::Values& initial, size_t min_p,
size_t max_p) const;
};
class ShonanAveraging3 {
ShonanAveraging3(const gtsam::This::Measurements& measurements,
const gtsam::ShonanAveragingParameters3& parameters =
gtsam::ShonanAveragingParameters3());
ShonanAveraging3(string g2oFile);
ShonanAveraging3(string g2oFile,
const gtsam::ShonanAveragingParameters3& parameters);
ShonanAveraging3(const gtsam::BetweenFactorPose3s& factors,
const gtsam::ShonanAveragingParameters3& parameters =
gtsam::ShonanAveragingParameters3());
// Query properties
size_t nrUnknowns() const;
size_t numberMeasurements() const;
gtsam::Rot3 measured(size_t i);
gtsam::KeyVector keys(size_t i);
// gtsam::Matrix API (advanced use, debugging)
gtsam::Matrix denseD() const;
gtsam::Matrix denseQ() const;
gtsam::Matrix denseL() const;
// gtsam::Matrix computeLambda_(gtsam::Matrix S) const;
gtsam::Matrix computeLambda_(const gtsam::Values& values) const;
gtsam::Matrix computeA_(const gtsam::Values& values) const;
double computeMinEigenValue(const gtsam::Values& values) const;
gtsam::Values initializeWithDescent(size_t p, const gtsam::Values& values,
const gtsam::Vector& minEigenVector,
double minEigenValue) const;
// Advanced API
gtsam::NonlinearFactorGraph buildGraphAt(size_t p) const;
gtsam::Values initializeRandomlyAt(size_t p) const;
double costAt(size_t p, const gtsam::Values& values) const;
pair<double, gtsam::Vector> computeMinEigenVector(const gtsam::Values& values) const;
bool checkOptimality(const gtsam::Values& values) const;
gtsam::LevenbergMarquardtOptimizer* createOptimizerAt(
size_t p, const gtsam::Values& initial);
// gtsam::Values tryOptimizingAt(size_t p) const;
gtsam::Values tryOptimizingAt(size_t p, const gtsam::Values& initial) const;
gtsam::Values projectFrom(size_t p, const gtsam::Values& values) const;
gtsam::Values roundSolution(const gtsam::Values& values) const;
// Basic API
double cost(const gtsam::Values& values) const;
gtsam::Values initializeRandomly() const;
pair<gtsam::Values, double> run(const gtsam::Values& initial, size_t min_p,
size_t max_p) const;
};
#include <gtsam/sfm/MFAS.h>
// Used in Matlab wrapper
class KeyPairDoubleMap {
KeyPairDoubleMap();
KeyPairDoubleMap(const gtsam::KeyPairDoubleMap& other);
size_t size() const;
bool empty() const;
void clear();
size_t at(const pair<size_t, size_t>& keypair) const;
};
class MFAS {
MFAS(const gtsam::BinaryMeasurementsUnit3& relativeTranslations,
const gtsam::Unit3& projectionDirection);
gtsam::KeyPairDoubleMap computeOutlierWeights() const;
gtsam::KeyVector computeOrdering() const;
};
#include <gtsam/sfm/TranslationRecovery.h>
class TranslationRecovery {
TranslationRecovery(const gtsam::LevenbergMarquardtParams& lmParams,
const bool use_bilinear_translation_factor);
TranslationRecovery(const gtsam::LevenbergMarquardtParams& lmParams);
TranslationRecovery(); // default params.
void addPrior(const gtsam::BinaryMeasurementsUnit3& relativeTranslations,
const double scale,
const gtsam::BinaryMeasurementsPoint3& betweenTranslations,
gtsam::NonlinearFactorGraph @graph,
const gtsam::SharedNoiseModel& priorNoiseModel) const;
void addPrior(const gtsam::BinaryMeasurementsUnit3& relativeTranslations,
const double scale,
const gtsam::BinaryMeasurementsPoint3& betweenTranslations,
gtsam::NonlinearFactorGraph @graph) const;
gtsam::NonlinearFactorGraph buildGraph(
const gtsam::BinaryMeasurementsUnit3& relativeTranslations) const;
gtsam::Values run(const gtsam::BinaryMeasurementsUnit3& relativeTranslations,
const double scale,
const gtsam::BinaryMeasurementsPoint3& betweenTranslations,
const gtsam::Values& initialValues) const;
// default random initial values
gtsam::Values run(
const gtsam::BinaryMeasurementsUnit3& relativeTranslations,
const double scale,
const gtsam::BinaryMeasurementsPoint3& betweenTranslations) const;
// default scale = 1.0, empty betweenTranslations
gtsam::Values run(const gtsam::BinaryMeasurementsUnit3& relativeTranslations,
const double scale = 1.0) const;
};
namespace gtsfm {
#include <gtsam/sfm/DsfTrackGenerator.h>
class MatchIndicesMap {
MatchIndicesMap();
MatchIndicesMap(const gtsam::gtsfm::MatchIndicesMap& other);
size_t size() const;
bool empty() const;
void clear();
gtsam::gtsfm::CorrespondenceIndices at(const gtsam::IndexPair& keypair) const;
};
class Keypoints {
Keypoints(const Eigen::MatrixX2d& coordinates);
Eigen::MatrixX2d coordinates;
};
class KeypointsVector {
KeypointsVector();
KeypointsVector(const gtsam::gtsfm::KeypointsVector& other);
void push_back(const gtsam::gtsfm::Keypoints& keypoints);
size_t size() const;
bool empty() const;
void clear();
gtsam::gtsfm::Keypoints at(const size_t& index) const;
};
gtsam::SfmTrack2dVector tracksFromPairwiseMatches(
const gtsam::gtsfm::MatchIndicesMap& matches_dict,
const gtsam::gtsfm::KeypointsVector& keypoints_list, bool verbose = false);
} // namespace gtsfm
} // namespace gtsam