gtsam/cpp/iterative.cpp

110 lines
2.8 KiB
C++

/*
* iterative.cpp
* @brief Iterative methods, implementation
* @author Frank Dellaert
* Created on: Dec 28, 2009
*/
#include "GaussianFactorGraph.h"
#include "iterative.h"
using namespace std;
namespace gtsam {
/* ************************************************************************* */
/**
* gradient of objective function 0.5*|Ax-b|^2 at x = A'*(Ax-b)
*/
Vector gradient(const System& Ab, const Vector& x) {
const Matrix& A = Ab.first;
const Vector& b = Ab.second;
return A ^ (A * x - b);
}
/**
* Apply operator A
*/
Vector operator*(const System& Ab, const Vector& x) {
const Matrix& A = Ab.first;
return A * x;
}
/**
* Apply operator A^T
*/
Vector operator^(const System& Ab, const Vector& x) {
const Matrix& A = Ab.first;
return A ^ x;
}
/* ************************************************************************* */
// Method of conjugate gradients (CG) template
// "System" class S needs gradient(S,v), e=S*v, v=S^e
// "Vector" class V needs dot(v,v), -v, v+v, s*v
// "Vector" class E needs dot(v,v)
template<class S, class V, class E>
V CGD(const S& Ab, V x, double threshold = 1e-9) {
// Start with g0 = A'*(A*x0-b), d0 = - g0
// i.e., first step is in direction of negative gradient
V g = gradient(Ab, x);
V d = -g;
double prev_dotg = dot(g, g);
// loop max n times
size_t n = x.size();
for (int k = 1; k <= n; k++) {
// calculate optimal step-size
E Ad = Ab * d;
double alpha = -dot(d, g) / dot(Ad, Ad);
// do step in new search direction
x = x + alpha * d;
if (k == n) break;
// update gradient
g = g + alpha * (Ab ^ Ad);
// check for convergence
double dotg = dot(g, g);
if (dotg < threshold) break;
// calculate new search direction
double beta = dotg / prev_dotg;
prev_dotg = dotg;
d = -g + beta * d;
}
return x;
}
/* ************************************************************************* */
Vector conjugateGradientDescent(const System& Ab, const Vector& x,
double threshold) {
return CGD<System, Vector, Vector> (Ab, x);
}
/* ************************************************************************* */
Vector conjugateGradientDescent(const Matrix& A, const Vector& b,
const Vector& x, double threshold) {
System Ab = make_pair(A, b);
return CGD<System, Vector, Vector> (Ab, x);
}
/* ************************************************************************* */
VectorConfig gradient(const GaussianFactorGraph& fg, const VectorConfig& x) {
return fg.gradient(x);
}
/* ************************************************************************* */
VectorConfig conjugateGradientDescent(const GaussianFactorGraph& fg,
const VectorConfig& x, double threshold) {
return CGD<GaussianFactorGraph, VectorConfig, Errors> (fg, x);
}
/* ************************************************************************* */
} // namespace gtsam