247 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			247 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
/*
 | 
						|
 * NestedDissection-inl.h
 | 
						|
 *
 | 
						|
 *   Created on: Nov 27, 2010
 | 
						|
 *       Author: nikai
 | 
						|
 *  Description:
 | 
						|
 */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
 | 
						|
#include "partition/FindSeparator-inl.h"
 | 
						|
#include "OrderedSymbols.h"
 | 
						|
#include "NestedDissection.h"
 | 
						|
 | 
						|
namespace gtsam { namespace partition {
 | 
						|
 | 
						|
  /* ************************************************************************* */
 | 
						|
  template <class NLG, class SubNLG, class GenericGraph>
 | 
						|
  NestedDissection<NLG, SubNLG, GenericGraph>::NestedDissection(
 | 
						|
      const NLG& fg, const Ordering& ordering, const int numNodeStopPartition, const int minNodesPerMap, const bool verbose) :
 | 
						|
  fg_(fg), ordering_(ordering){
 | 
						|
    const auto [unaryFactors, gfg] = fg.createGenericGraph(ordering);
 | 
						|
 | 
						|
    // build reverse mapping from integer to symbol
 | 
						|
    int numNodes = ordering.size();
 | 
						|
    int2symbol_.resize(numNodes);
 | 
						|
    Ordering::const_iterator it = ordering.begin(), itLast = ordering.end();
 | 
						|
    while(it != itLast)
 | 
						|
      int2symbol_[it->second] = (it++)->first;
 | 
						|
 | 
						|
    vector<size_t> keys;
 | 
						|
    keys.reserve(numNodes);
 | 
						|
    for(int i=0; i<ordering.size(); ++i)
 | 
						|
      keys.push_back(i);
 | 
						|
 | 
						|
    WorkSpace workspace(numNodes);
 | 
						|
    root_ = recursivePartition(gfg, unaryFactors, keys, vector<size_t>(), numNodeStopPartition, minNodesPerMap, std::shared_ptr<SubNLG>(), workspace, verbose);
 | 
						|
  }
 | 
						|
 | 
						|
  /* ************************************************************************* */
 | 
						|
  template <class NLG, class SubNLG, class GenericGraph>
 | 
						|
  NestedDissection<NLG, SubNLG, GenericGraph>::NestedDissection(
 | 
						|
      const NLG& fg, const Ordering& ordering, const std::shared_ptr<Cuts>& cuts, const bool verbose) : fg_(fg), ordering_(ordering){
 | 
						|
    const auto [unaryFactors, gfg] = fg.createGenericGraph(ordering);
 | 
						|
 | 
						|
    // build reverse mapping from integer to symbol
 | 
						|
    int numNodes = ordering.size();
 | 
						|
    int2symbol_.resize(numNodes);
 | 
						|
    Ordering::const_iterator it = ordering.begin(), itLast = ordering.end();
 | 
						|
    while(it != itLast)
 | 
						|
      int2symbol_[it->second] = (it++)->first;
 | 
						|
 | 
						|
    vector<size_t> keys;
 | 
						|
    keys.reserve(numNodes);
 | 
						|
    for(int i=0; i<ordering.size(); ++i)
 | 
						|
      keys.push_back(i);
 | 
						|
 | 
						|
    WorkSpace workspace(numNodes);
 | 
						|
    root_ = recursivePartition(gfg, unaryFactors, keys, vector<size_t>(), cuts, std::shared_ptr<SubNLG>(), workspace, verbose);
 | 
						|
  }
 | 
						|
 | 
						|
  /* ************************************************************************* */
 | 
						|
  template <class NLG, class SubNLG, class GenericGraph>
 | 
						|
  std::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::makeSubNLG(
 | 
						|
      const NLG& fg, const vector<size_t>& frontals, const vector<size_t>& sep, const std::shared_ptr<SubNLG>& parent) const {
 | 
						|
    OrderedSymbols frontalKeys;
 | 
						|
    for(const size_t index: frontals)
 | 
						|
      frontalKeys.push_back(int2symbol_[index]);
 | 
						|
 | 
						|
    UnorderedSymbols sepKeys;
 | 
						|
    for(const size_t index: sep)
 | 
						|
      sepKeys.insert(int2symbol_[index]);
 | 
						|
 | 
						|
    return std::make_shared<SubNLG>(fg, frontalKeys, sepKeys, parent);
 | 
						|
  }
 | 
						|
 | 
						|
  /* ************************************************************************* */
 | 
						|
  template <class NLG, class SubNLG, class GenericGraph>
 | 
						|
  void NestedDissection<NLG, SubNLG, GenericGraph>::processFactor(
 | 
						|
      const typename GenericGraph::value_type& factor, const std::vector<int>& partitionTable,  // input
 | 
						|
      vector<GenericGraph>& frontalFactors, NLG& sepFactors, vector<set<size_t> >& childSeps, // output factor graphs
 | 
						|
      typename SubNLG::Weeklinks& weeklinks) const {                                                              // the links between child cliques
 | 
						|
    list<size_t> sep_; // the separator variables involved in the current factor
 | 
						|
    int partition1 = partitionTable[factor->key1.index];
 | 
						|
    int partition2 = partitionTable[factor->key2.index];
 | 
						|
    if (partition1 <= 0 && partition2 <= 0) {                                // is a factor in the current clique
 | 
						|
      sepFactors.push_back(fg_[factor->index]);
 | 
						|
    }
 | 
						|
    else if (partition1 > 0 && partition2 > 0 && partition1 != partition2) {  // is a weeklink (factor between two child cliques)
 | 
						|
      weeklinks.push_back(fg_[factor->index]);
 | 
						|
    }
 | 
						|
    else if (partition1 > 0 && partition2 > 0 && partition1 == partition2) { // is a local factor in one of the child cliques
 | 
						|
      frontalFactors[partition1 - 1].push_back(factor);
 | 
						|
    }
 | 
						|
    else {                                                          // is a joint factor in the child clique (involving varaibles in the current clique)
 | 
						|
      if (partition1 > 0 && partition2 <= 0) {
 | 
						|
        frontalFactors[partition1 - 1].push_back(factor);
 | 
						|
        childSeps[partition1 - 1].insert(factor->key2.index);
 | 
						|
      } else if (partition1 <= 0 && partition2 > 0) {
 | 
						|
        frontalFactors[partition2 - 1].push_back(factor);
 | 
						|
        childSeps[partition2 - 1].insert(factor->key1.index);
 | 
						|
      } else
 | 
						|
        throw runtime_error("processFactor: unexpected entries in the partition table!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* ************************************************************************* */
 | 
						|
  /**
 | 
						|
   * given a factor graph and its partition {nodeMap}, split the factors between the child cliques ({frontalFactors})
 | 
						|
   *  and the current clique ({sepFactors}). Also split the variables between the child cliques ({childFrontals})
 | 
						|
   *  and the current clique ({localFrontals}). Those separator variables involved in {frontalFactors} are put into
 | 
						|
   *  the correspoding ordering in {childSeps}.
 | 
						|
   */
 | 
						|
  // TODO: frontalFactors and localFrontals should be generated in findSeparator
 | 
						|
  template <class NLG, class SubNLG, class GenericGraph>
 | 
						|
  void NestedDissection<NLG, SubNLG, GenericGraph>::partitionFactorsAndVariables(
 | 
						|
      const GenericGraph& fg, const GenericUnaryGraph& unaryFactors, const std::vector<size_t>& keys, //input
 | 
						|
      const std::vector<int>& partitionTable, const int numSubmaps,                                   // input
 | 
						|
      vector<GenericGraph>& frontalFactors, vector<GenericUnaryGraph>& frontalUnaryFactors,  NLG& sepFactors,     // output factor graphs
 | 
						|
      vector<vector<size_t> >& childFrontals, vector<vector<size_t> >& childSeps, vector<size_t>& localFrontals,  // output sub-orderings
 | 
						|
      typename SubNLG::Weeklinks& weeklinks) const {                                                             // the links between child cliques
 | 
						|
 | 
						|
    // make three lists of variables A, B, and C
 | 
						|
    int partition;
 | 
						|
    childFrontals.resize(numSubmaps);
 | 
						|
    for(const size_t key: keys){
 | 
						|
      partition = partitionTable[key];
 | 
						|
      switch (partition) {
 | 
						|
      case -1: break;                                        // the separator of the separator variables
 | 
						|
      case 0:   localFrontals.push_back(key); break;          // the separator variables
 | 
						|
      default: childFrontals[partition-1].push_back(key);    // the frontal variables
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // group the factors to {frontalFactors} and {sepFactors},and find the joint variables
 | 
						|
    vector<set<size_t> > childSeps_;
 | 
						|
    childSeps_.resize(numSubmaps);
 | 
						|
    childSeps.reserve(numSubmaps);
 | 
						|
    frontalFactors.resize(numSubmaps);
 | 
						|
    frontalUnaryFactors.resize(numSubmaps);
 | 
						|
    for(typename GenericGraph::value_type factor: fg)
 | 
						|
      processFactor(factor, partitionTable, frontalFactors, sepFactors, childSeps_, weeklinks);
 | 
						|
    for(const set<size_t>& childSep: childSeps_)
 | 
						|
      childSeps.push_back(vector<size_t>(childSep.begin(), childSep.end()));
 | 
						|
 | 
						|
    // add unary factor to the current cluster or pass it to one of the child clusters
 | 
						|
    for(const sharedGenericUnaryFactor& unaryFactor_: unaryFactors) {
 | 
						|
      partition = partitionTable[unaryFactor_->key.index];
 | 
						|
      if (!partition) sepFactors.push_back(fg_[unaryFactor_->index]);
 | 
						|
      else frontalUnaryFactors[partition-1].push_back(unaryFactor_);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* ************************************************************************* */
 | 
						|
  template <class NLG, class SubNLG, class GenericGraph>
 | 
						|
  NLG NestedDissection<NLG, SubNLG, GenericGraph>::collectOriginalFactors(
 | 
						|
      const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors) const {
 | 
						|
    NLG sepFactors;
 | 
						|
    typename GenericGraph::const_iterator it = gfg.begin(), itLast = gfg.end();
 | 
						|
    while(it!=itLast) sepFactors.push_back(fg_[(*it++)->index]);
 | 
						|
    for(const sharedGenericUnaryFactor& unaryFactor_: unaryFactors)
 | 
						|
      sepFactors.push_back(fg_[unaryFactor_->index]);
 | 
						|
    return sepFactors;
 | 
						|
  }
 | 
						|
 | 
						|
  /* ************************************************************************* */
 | 
						|
  template <class NLG, class SubNLG, class GenericGraph>
 | 
						|
  std::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::recursivePartition(
 | 
						|
      const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const vector<size_t>& frontals, const vector<size_t>& sep,
 | 
						|
      const int numNodeStopPartition, const int minNodesPerMap, const std::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const {
 | 
						|
 | 
						|
    // if no split needed
 | 
						|
    NLG sepFactors; // factors that should remain in the current cluster
 | 
						|
    if (frontals.size() <= numNodeStopPartition || gfg.size() <= numNodeStopPartition) {
 | 
						|
      sepFactors = collectOriginalFactors(gfg, unaryFactors);
 | 
						|
      return makeSubNLG(sepFactors, frontals, sep, parent);
 | 
						|
    }
 | 
						|
 | 
						|
    // find the nested dissection separator
 | 
						|
    int numSubmaps = findSeparator(gfg, frontals, minNodesPerMap, workspace, verbose, int2symbol_, NLG::reduceGraph(),
 | 
						|
        NLG::minNrConstraintsPerCamera(),NLG::minNrConstraintsPerLandmark());
 | 
						|
    partition::PartitionTable& partitionTable = workspace.partitionTable;
 | 
						|
    if (numSubmaps == 0) throw runtime_error("recursivePartition: get zero submap after ND!");
 | 
						|
 | 
						|
    // split the factors between child cliques and the current clique
 | 
						|
    vector<GenericGraph> frontalFactors; vector<GenericUnaryGraph> frontalUnaryFactors; typename SubNLG::Weeklinks weeklinks;
 | 
						|
    vector<size_t> localFrontals; vector<vector<size_t> > childFrontals, childSeps;
 | 
						|
    partitionFactorsAndVariables(gfg, unaryFactors, frontals, partitionTable, numSubmaps,
 | 
						|
        frontalFactors, frontalUnaryFactors, sepFactors, childFrontals, childSeps, localFrontals, weeklinks);
 | 
						|
 | 
						|
    // make a new cluster
 | 
						|
    std::shared_ptr<SubNLG> current = makeSubNLG(sepFactors, localFrontals, sep, parent);
 | 
						|
    current->setWeeklinks(weeklinks);
 | 
						|
 | 
						|
    // check whether all the submaps are fully constrained
 | 
						|
    for (int i=0; i<numSubmaps; i++) {
 | 
						|
      checkSingularity(frontalFactors[i], childFrontals[i], workspace, NLG::minNrConstraintsPerCamera(),NLG::minNrConstraintsPerLandmark());
 | 
						|
    }
 | 
						|
 | 
						|
    // create child clusters
 | 
						|
    for (int i=0; i<numSubmaps; i++) {
 | 
						|
      std::shared_ptr<SubNLG> child = recursivePartition(frontalFactors[i], frontalUnaryFactors[i], childFrontals[i], childSeps[i],
 | 
						|
          numNodeStopPartition, minNodesPerMap, current, workspace, verbose);
 | 
						|
      current->addChild(child);
 | 
						|
    }
 | 
						|
 | 
						|
    return current;
 | 
						|
  }
 | 
						|
 | 
						|
  /* ************************************************************************* */
 | 
						|
  template <class NLG, class SubNLG, class GenericGraph>
 | 
						|
  std::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::recursivePartition(
 | 
						|
      const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const vector<size_t>& frontals, const vector<size_t>& sep,
 | 
						|
      const std::shared_ptr<Cuts>& cuts, const std::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const {
 | 
						|
 | 
						|
    // if there is no need to cut any more
 | 
						|
    NLG sepFactors; // factors that should remain in the current cluster
 | 
						|
    if (!cuts.get()) {
 | 
						|
      sepFactors = collectOriginalFactors(gfg, unaryFactors);
 | 
						|
      return makeSubNLG(sepFactors, frontals, sep, parent);
 | 
						|
    }
 | 
						|
 | 
						|
    // retrieve the current partitioning info
 | 
						|
    int numSubmaps = 2;
 | 
						|
    partition::PartitionTable& partitionTable = cuts->partitionTable;
 | 
						|
 | 
						|
    // split the factors between child cliques and the current clique
 | 
						|
    vector<GenericGraph> frontalFactors; vector<GenericUnaryGraph> frontalUnaryFactors; typename SubNLG::Weeklinks weeklinks;
 | 
						|
    vector<size_t> localFrontals; vector<vector<size_t> > childFrontals, childSeps;
 | 
						|
    partitionFactorsAndVariables(gfg, unaryFactors, frontals, partitionTable, numSubmaps,
 | 
						|
        frontalFactors, frontalUnaryFactors, sepFactors, childFrontals, childSeps, localFrontals, weeklinks);
 | 
						|
 | 
						|
    // make a new cluster
 | 
						|
    std::shared_ptr<SubNLG> current = makeSubNLG(sepFactors, localFrontals, sep, parent);
 | 
						|
    current->setWeeklinks(weeklinks);
 | 
						|
 | 
						|
    // create child clusters
 | 
						|
    for (int i=0; i<2; i++) {
 | 
						|
      std::shared_ptr<SubNLG> child = recursivePartition(frontalFactors[i], frontalUnaryFactors[i], childFrontals[i], childSeps[i],
 | 
						|
          cuts->children.empty() ? std::shared_ptr<Cuts>() : cuts->children[i], current, workspace, verbose);
 | 
						|
      current->addChild(child);
 | 
						|
    }
 | 
						|
    return current;
 | 
						|
  }
 | 
						|
}} //namespace
 |