gtsam/examples/EssentialViewGraphExample.cpp

138 lines
4.4 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file EssentialViewGraphExample.cpp
* @brief View-graph calibration with essential matrices.
* @author Frank Dellaert
* @date October 2024
*/
#include <gtsam/geometry/Cal3f.h>
#include <gtsam/geometry/EssentialMatrix.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/EdgeKey.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/sfm/TransferFactor.h> // Contains EssentialTransferFactor
#include <vector>
#include "SFMdata.h" // For createPoints() and posesOnCircle()
using namespace std;
using namespace gtsam;
using namespace symbol_shorthand; // For K(symbol)
// Main function
int main(int argc, char* argv[]) {
// Define the camera calibration parameters
Cal3f cal(50.0, 50.0, 50.0);
// Create the set of 8 ground-truth landmarks
vector<Point3> points = createPoints();
// Create the set of 4 ground-truth poses
vector<Pose3> poses = posesOnCircle(4, 30);
// Calculate ground truth essential matrices, 1 and 2 poses apart
auto E1 = EssentialMatrix::FromPose3(poses[0].between(poses[1]));
auto E2 = EssentialMatrix::FromPose3(poses[0].between(poses[2]));
// Simulate measurements from each camera pose
std::array<std::array<Point2, 8>, 4> p;
for (size_t i = 0; i < 4; ++i) {
PinholeCamera<Cal3f> camera(poses[i], cal);
for (size_t j = 0; j < 8; ++j) {
p[i][j] = camera.project(points[j]);
}
}
// Create the factor graph
NonlinearFactorGraph graph;
using Factor = EssentialTransferFactor<Cal3f>;
for (size_t a = 0; a < 4; ++a) {
size_t b = (a + 1) % 4; // Next camera
size_t c = (a + 2) % 4; // Camera after next
// Vectors to collect tuples for each factor
std::vector<std::tuple<Point2, Point2, Point2>> tuples1, tuples2, tuples3;
// Collect data for the three factors
for (size_t j = 0; j < 8; ++j) {
tuples1.emplace_back(p[a][j], p[b][j], p[c][j]);
tuples2.emplace_back(p[a][j], p[c][j], p[b][j]);
tuples3.emplace_back(p[c][j], p[b][j], p[a][j]);
}
// Add transfer factors between views a, b, and c.
graph.emplace_shared<Factor>(EdgeKey(a, c), EdgeKey(b, c), tuples1);
graph.emplace_shared<Factor>(EdgeKey(a, b), EdgeKey(b, c), tuples2);
graph.emplace_shared<Factor>(EdgeKey(a, c), EdgeKey(a, b), tuples3);
}
// Formatter for printing keys
auto formatter = [](Key key) {
if (Symbol(key).chr() == 'k') {
return (string)Symbol(key);
} else {
EdgeKey edge(key);
return (std::string)edge;
}
};
graph.print("Factor Graph:\n", formatter);
// Create a delta vector to perturb the ground truth (small perturbation)
Vector5 delta;
delta << 1, 1, 1, 1, 1;
delta *= 1e-2;
// Create the initial estimate for essential matrices
Values initialEstimate;
for (size_t a = 0; a < 4; ++a) {
size_t b = (a + 1) % 4; // Next camera
size_t c = (a + 2) % 4; // Camera after next
initialEstimate.insert(EdgeKey(a, b), E1.retract(delta));
initialEstimate.insert(EdgeKey(a, c), E2.retract(delta));
}
// Insert initial calibrations (using K symbol)
for (size_t i = 0; i < 4; ++i) {
initialEstimate.insert(K(i), cal);
}
initialEstimate.print("Initial Estimates:\n", formatter);
graph.printErrors(initialEstimate, "Initial Errors:\n", formatter);
// Optimize the graph and print results
LevenbergMarquardtParams params;
params.setlambdaInitial(1000.0); // Initialize lambda to a high value
params.setVerbosityLM("SUMMARY");
Values result =
LevenbergMarquardtOptimizer(graph, initialEstimate, params).optimize();
cout << "Initial error = " << graph.error(initialEstimate) << endl;
cout << "Final error = " << graph.error(result) << endl;
result.print("Final Results:\n", formatter);
E1.print("Ground Truth E1:\n");
E2.print("Ground Truth E2:\n");
return 0;
}