223 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			223 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 *  @file   testSubgraphConditioner.cpp
 | 
						|
 *  @brief  Unit tests for SubgraphPreconditioner
 | 
						|
 *  @author Frank Dellaert
 | 
						|
 **/
 | 
						|
 | 
						|
#include <tests/smallExample.h>
 | 
						|
 | 
						|
#include <gtsam/base/numericalDerivative.h>
 | 
						|
#include <gtsam/inference/Ordering.h>
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
#include <gtsam/linear/GaussianEliminationTree.h>
 | 
						|
#include <gtsam/linear/GaussianFactorGraph.h>
 | 
						|
#include <gtsam/linear/SubgraphPreconditioner.h>
 | 
						|
#include <gtsam/linear/iterative.h>
 | 
						|
#include <gtsam/slam/dataset.h>
 | 
						|
#include <gtsam/symbolic/SymbolicFactorGraph.h>
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#include <fstream>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
using namespace example;
 | 
						|
 | 
						|
// define keys
 | 
						|
// Create key for simulated planar graph
 | 
						|
Symbol key(int x, int y) { return symbol_shorthand::X(1000 * x + y); }
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(SubgraphPreconditioner, planarOrdering) {
 | 
						|
  // Check canonical ordering
 | 
						|
  Ordering expected, ordering = planarOrdering(3);
 | 
						|
  expected +=
 | 
						|
      key(3, 3), key(2, 3), key(1, 3),
 | 
						|
      key(3, 2), key(2, 2), key(1, 2),
 | 
						|
      key(3, 1), key(2, 1), key(1, 1);
 | 
						|
  EXPECT(assert_equal(expected, ordering));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
/** unnormalized error */
 | 
						|
static double error(const GaussianFactorGraph& fg, const VectorValues& x) {
 | 
						|
  double total_error = 0.;
 | 
						|
  for (const GaussianFactor::shared_ptr& factor : fg)
 | 
						|
    total_error += factor->error(x);
 | 
						|
  return total_error;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(SubgraphPreconditioner, planarGraph) {
 | 
						|
  // Check planar graph construction
 | 
						|
  const auto [A, xtrue] = planarGraph(3);
 | 
						|
  LONGS_EQUAL(13, A.size());
 | 
						|
  LONGS_EQUAL(9, xtrue.size());
 | 
						|
  DOUBLES_EQUAL(0, error(A, xtrue), 1e-9);  // check zero error for xtrue
 | 
						|
 | 
						|
  // Check that xtrue is optimal
 | 
						|
  GaussianBayesNet R1 = *A.eliminateSequential();
 | 
						|
  VectorValues actual = R1.optimize();
 | 
						|
  EXPECT(assert_equal(xtrue, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(SubgraphPreconditioner, splitOffPlanarTree) {
 | 
						|
  // Build a planar graph
 | 
						|
  const auto [A, xtrue] = planarGraph(3);
 | 
						|
 | 
						|
  // Get the spanning tree and constraints, and check their sizes
 | 
						|
  const auto [T, C] = splitOffPlanarTree(3, A);
 | 
						|
  LONGS_EQUAL(9, T.size());
 | 
						|
  LONGS_EQUAL(4, C.size());
 | 
						|
 | 
						|
  // Check that the tree can be solved to give the ground xtrue
 | 
						|
  GaussianBayesNet R1 = *T.eliminateSequential();
 | 
						|
  VectorValues xbar = R1.optimize();
 | 
						|
  EXPECT(assert_equal(xtrue, xbar));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(SubgraphPreconditioner, system) {
 | 
						|
  // Build a planar graph
 | 
						|
  size_t N = 3;
 | 
						|
  const auto [Ab, xtrue] = planarGraph(N);  // A*x-b
 | 
						|
 | 
						|
  // Get the spanning tree and remaining graph
 | 
						|
  auto [Ab1, Ab2] = splitOffPlanarTree(N, Ab);
 | 
						|
 | 
						|
  // Eliminate the spanning tree to build a prior
 | 
						|
  const Ordering ord = planarOrdering(N);
 | 
						|
  auto Rc1 = *Ab1.eliminateSequential(ord);  // R1*x-c1
 | 
						|
  VectorValues xbar = Rc1.optimize();       // xbar = inv(R1)*c1
 | 
						|
 | 
						|
  // Create Subgraph-preconditioned system
 | 
						|
  const SubgraphPreconditioner system(Ab2, Rc1, xbar);
 | 
						|
 | 
						|
  // Get corresponding matrices for tests. Add dummy factors to Ab2 to make
 | 
						|
  // sure it works with the ordering.
 | 
						|
  Ordering ordering = Rc1.ordering();  // not ord in general!
 | 
						|
  Ab2.add(key(1, 1), Z_2x2, Z_2x1);
 | 
						|
  Ab2.add(key(1, 2), Z_2x2, Z_2x1);
 | 
						|
  Ab2.add(key(1, 3), Z_2x2, Z_2x1);
 | 
						|
  const auto [A, b] = Ab.jacobian(ordering);
 | 
						|
  const auto [A1, b1] = Ab1.jacobian(ordering);
 | 
						|
  const auto [A2, b2] = Ab2.jacobian(ordering);
 | 
						|
  Matrix R1 = Rc1.matrix(ordering).first;
 | 
						|
  Matrix Abar(13 * 2, 9 * 2);
 | 
						|
  Abar.topRows(9 * 2) = Matrix::Identity(9 * 2, 9 * 2);
 | 
						|
  Abar.bottomRows(8) = A2.topRows(8) * R1.inverse();
 | 
						|
 | 
						|
  // Helper function to vectorize in correct order, which is the order in which
 | 
						|
  // we eliminated the spanning tree.
 | 
						|
  auto vec = [ordering](const VectorValues& x) { return x.vector(ordering); };
 | 
						|
 | 
						|
  // Set up y0 as all zeros
 | 
						|
  const VectorValues y0 = system.zero();
 | 
						|
 | 
						|
  // y1 = perturbed y0
 | 
						|
  VectorValues y1 = system.zero();
 | 
						|
  y1[key(3, 3)] = Vector2(1.0, -1.0);
 | 
						|
 | 
						|
  // Check backSubstituteTranspose works with R1
 | 
						|
  VectorValues actual = Rc1.backSubstituteTranspose(y1);
 | 
						|
  Vector expected = R1.transpose().inverse() * vec(y1);
 | 
						|
  EXPECT(assert_equal(expected, vec(actual)));
 | 
						|
 | 
						|
  // Check corresponding x values
 | 
						|
  // for y = 0, we get xbar:
 | 
						|
  EXPECT(assert_equal(xbar, system.x(y0)));
 | 
						|
  // for non-zero y, answer is x = xbar + inv(R1)*y
 | 
						|
  const Vector expected_x1 = vec(xbar) + R1.inverse() * vec(y1);
 | 
						|
  const VectorValues x1 = system.x(y1);
 | 
						|
  EXPECT(assert_equal(expected_x1, vec(x1)));
 | 
						|
 | 
						|
  // Check errors
 | 
						|
  DOUBLES_EQUAL(0, error(Ab, xbar), 1e-9);
 | 
						|
  DOUBLES_EQUAL(0, system.error(y0), 1e-9);
 | 
						|
  DOUBLES_EQUAL(2, error(Ab, x1), 1e-9);
 | 
						|
  DOUBLES_EQUAL(2, system.error(y1), 1e-9);
 | 
						|
 | 
						|
  // Check that transposeMultiplyAdd <=> y += alpha * Abar' * e
 | 
						|
  // We check for e1 =[1;0] and e2=[0;1] corresponding to T and C
 | 
						|
  const double alpha = 0.5;
 | 
						|
  Errors e1, e2;
 | 
						|
  for (size_t i = 0; i < 13; i++) {
 | 
						|
    e1.push_back(i < 9 ? Vector2(1, 1) : Vector2(0, 0));
 | 
						|
    e2.push_back(i >= 9 ? Vector2(1, 1) : Vector2(0, 0));
 | 
						|
  }
 | 
						|
  Vector ee1(13 * 2), ee2(13 * 2);
 | 
						|
  ee1 << Vector::Ones(9 * 2), Vector::Zero(4 * 2);
 | 
						|
  ee2 << Vector::Zero(9 * 2), Vector::Ones(4 * 2);
 | 
						|
 | 
						|
  // Check transposeMultiplyAdd for e1
 | 
						|
  VectorValues y = system.zero();
 | 
						|
  system.transposeMultiplyAdd(alpha, e1, y);
 | 
						|
  Vector expected_y = alpha * Abar.transpose() * ee1;
 | 
						|
  EXPECT(assert_equal(expected_y, vec(y)));
 | 
						|
 | 
						|
  // Check transposeMultiplyAdd for e2
 | 
						|
  y = system.zero();
 | 
						|
  system.transposeMultiplyAdd(alpha, e2, y);
 | 
						|
  expected_y = alpha * Abar.transpose() * ee2;
 | 
						|
  EXPECT(assert_equal(expected_y, vec(y)));
 | 
						|
 | 
						|
  // Test gradient in y
 | 
						|
  auto g = system.gradient(y0);
 | 
						|
  Vector expected_g = Vector::Zero(18);
 | 
						|
  EXPECT(assert_equal(expected_g, vec(g)));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(SubgraphPreconditioner, conjugateGradients) {
 | 
						|
  // Build a planar graph
 | 
						|
  size_t N = 3;
 | 
						|
  const auto [Ab, xtrue] = planarGraph(N);  // A*x-b
 | 
						|
 | 
						|
  // Get the spanning tree
 | 
						|
  const auto [Ab1, Ab2] = splitOffPlanarTree(N, Ab);
 | 
						|
 | 
						|
  // Eliminate the spanning tree to build a prior
 | 
						|
  GaussianBayesNet Rc1 = *Ab1.eliminateSequential();  // R1*x-c1
 | 
						|
  VectorValues xbar = Rc1.optimize();  // xbar = inv(R1)*c1
 | 
						|
 | 
						|
  // Create Subgraph-preconditioned system
 | 
						|
  SubgraphPreconditioner system(Ab2, Rc1, xbar);
 | 
						|
 | 
						|
  // Create zero config y0 and perturbed config y1
 | 
						|
  VectorValues y0 = VectorValues::Zero(xbar);
 | 
						|
 | 
						|
  VectorValues y1 = y0;
 | 
						|
  y1[key(2, 2)] = Vector2(1.0, -1.0);
 | 
						|
  VectorValues x1 = system.x(y1);
 | 
						|
 | 
						|
  // Solve for the remaining constraints using PCG
 | 
						|
  ConjugateGradientParameters parameters;
 | 
						|
  VectorValues actual = conjugateGradients<SubgraphPreconditioner,
 | 
						|
      VectorValues, Errors>(system, y1, parameters);
 | 
						|
  EXPECT(assert_equal(y0,actual));
 | 
						|
 | 
						|
  // Compare with non preconditioned version:
 | 
						|
  VectorValues actual2 = conjugateGradientDescent(Ab, x1, parameters);
 | 
						|
  EXPECT(assert_equal(xtrue, actual2, 1e-4));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() {
 | 
						|
  TestResult tr;
 | 
						|
  return TestRegistry::runAllTests(tr);
 | 
						|
}
 | 
						|
/* ************************************************************************* */
 |