gtsam/gtsam/geometry/tests/testCal3Bundler.cpp

178 lines
6.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testCal3Bundler.cpp
* @brief Unit tests for Bundler calibration model.
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/geometry/Cal3Bundler.h>
using namespace gtsam;
GTSAM_CONCEPT_TESTABLE_INST(Cal3Bundler)
GTSAM_CONCEPT_MANIFOLD_INST(Cal3Bundler)
static Cal3Bundler K(500, 1e-3, 1e-3, 1000, 2000);
static Point2 p(2, 3);
/* ************************************************************************* */
TEST(Cal3Bundler, vector) {
Cal3Bundler K;
Vector expected(3);
expected << 1, 0, 0;
CHECK(assert_equal(expected, K.vector()));
}
/* ************************************************************************* */
TEST(Cal3Bundler, uncalibrate) {
Vector v = K.vector();
double r = p.x() * p.x() + p.y() * p.y();
double g = v[0] * (1 + v[1] * r + v[2] * r * r);
Point2 expected(1000 + g * p.x(), 2000 + g * p.y());
Point2 actual = K.uncalibrate(p);
CHECK(assert_equal(expected, actual));
}
TEST(Cal3Bundler, calibrate) {
Point2 pn(0.5, 0.5);
Point2 pi = K.uncalibrate(pn);
Point2 pn_hat = K.calibrate(pi);
CHECK(traits<Point2>::Equals(pn, pn_hat, 1e-5));
}
/* ************************************************************************* */
Point2 uncalibrate_(const Cal3Bundler& k, const Point2& pt) {
return k.uncalibrate(pt);
}
Point2 calibrate_(const Cal3Bundler& k, const Point2& pt) {
return k.calibrate(pt);
}
/* ************************************************************************* */
TEST(Cal3Bundler, DuncalibrateDefault) {
Cal3Bundler trueK(1, 0, 0);
Matrix Dcal, Dp;
Point2 actual = trueK.uncalibrate(p, Dcal, Dp);
Point2 expected = p;
CHECK(assert_equal(expected, actual, 1e-7));
Matrix numerical1 = numericalDerivative21(uncalibrate_, trueK, p);
Matrix numerical2 = numericalDerivative22(uncalibrate_, trueK, p);
CHECK(assert_equal(numerical1, Dcal, 1e-7));
CHECK(assert_equal(numerical2, Dp, 1e-7));
}
/* ************************************************************************* */
TEST(Cal3Bundler, DcalibrateDefault) {
Cal3Bundler trueK(1, 0, 0);
Matrix Dcal, Dp;
Point2 pn(0.5, 0.5);
Point2 pi = trueK.uncalibrate(pn);
Point2 actual = trueK.calibrate(pi, Dcal, Dp);
CHECK(assert_equal(pn, actual, 1e-7));
Matrix numerical1 = numericalDerivative21(calibrate_, trueK, pi);
Matrix numerical2 = numericalDerivative22(calibrate_, trueK, pi);
CHECK(assert_equal(numerical1, Dcal, 1e-5));
CHECK(assert_equal(numerical2, Dp, 1e-5));
}
/* ************************************************************************* */
TEST(Cal3Bundler, DuncalibratePrincipalPoint) {
Cal3Bundler K(5, 0, 0, 2, 2);
Matrix Dcal, Dp;
Point2 actual = K.uncalibrate(p, Dcal, Dp);
Point2 expected(12, 17);
CHECK(assert_equal(expected, actual, 1e-7));
Matrix numerical1 = numericalDerivative21(uncalibrate_, K, p);
Matrix numerical2 = numericalDerivative22(uncalibrate_, K, p);
CHECK(assert_equal(numerical1, Dcal, 1e-7));
CHECK(assert_equal(numerical2, Dp, 1e-7));
}
/* ************************************************************************* */
TEST(Cal3Bundler, DcalibratePrincipalPoint) {
Cal3Bundler K(2, 0, 0, 2, 2);
Matrix Dcal, Dp;
Point2 pn(0.5, 0.5);
Point2 pi = K.uncalibrate(pn);
Point2 actual = K.calibrate(pi, Dcal, Dp);
CHECK(assert_equal(pn, actual, 1e-7));
Matrix numerical1 = numericalDerivative21(calibrate_, K, pi);
Matrix numerical2 = numericalDerivative22(calibrate_, K, pi);
CHECK(assert_equal(numerical1, Dcal, 1e-5));
CHECK(assert_equal(numerical2, Dp, 1e-5));
}
/* ************************************************************************* */
TEST(Cal3Bundler, Duncalibrate) {
Matrix Dcal, Dp;
Point2 actual = K.uncalibrate(p, Dcal, Dp);
Point2 expected(2182, 3773);
CHECK(assert_equal(expected, actual, 1e-7));
Matrix numerical1 = numericalDerivative21(uncalibrate_, K, p);
Matrix numerical2 = numericalDerivative22(uncalibrate_, K, p);
CHECK(assert_equal(numerical1, Dcal, 1e-7));
CHECK(assert_equal(numerical2, Dp, 1e-7));
}
/* ************************************************************************* */
TEST(Cal3Bundler, Dcalibrate) {
Matrix Dcal, Dp;
Point2 pn(0.5, 0.5);
Point2 pi = K.uncalibrate(pn);
Point2 actual = K.calibrate(pi, Dcal, Dp);
CHECK(assert_equal(pn, actual, 1e-7));
Matrix numerical1 = numericalDerivative21(calibrate_, K, pi);
Matrix numerical2 = numericalDerivative22(calibrate_, K, pi);
CHECK(assert_equal(numerical1, Dcal, 1e-5));
CHECK(assert_equal(numerical2, Dp, 1e-5));
}
/* ************************************************************************* */
TEST(Cal3Bundler, assert_equal) { CHECK(assert_equal(K, K, 1e-7)); }
/* ************************************************************************* */
TEST(Cal3Bundler, retract) {
Cal3Bundler expected(510, 2e-3, 2e-3, 1000, 2000);
EXPECT_LONGS_EQUAL(3, expected.dim());
EXPECT_LONGS_EQUAL(Cal3Bundler::Dim(), 3);
EXPECT_LONGS_EQUAL(expected.dim(), 3);
Vector3 d;
d << 10, 1e-3, 1e-3;
Cal3Bundler actual = K.retract(d);
CHECK(assert_equal(expected, actual, 1e-7));
CHECK(assert_equal(d, K.localCoordinates(actual), 1e-7));
}
/* ************************************************************************* */
TEST(Cal3_S2, Print) {
Cal3Bundler cal(1, 2, 3, 4, 5);
std::stringstream os;
os << "f: " << cal.fx() << ", k1: " << cal.k1() << ", k2: " << cal.k2()
<< ", px: " << cal.px() << ", py: " << cal.py();
EXPECT(assert_stdout_equal(os.str(), cal));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */