gtsam/gtsam_unstable/slam/tests/testPoseToPointFactor.cpp

163 lines
5.3 KiB
C++

/**
* @file testPoseToPointFactor.cpp
* @brief
* @author David Wisth
* @author Luca Carlone
* @date June 20, 2020
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam_unstable/slam/PoseToPointFactor.h>
using namespace gtsam;
using namespace gtsam::noiseModel;
/* ************************************************************************* */
// Verify zero error when there is no noise
TEST(PoseToPointFactor, errorNoiseless_2D) {
Pose2 pose = Pose2::Identity();
Point2 point(1.0, 2.0);
Point2 noise(0.0, 0.0);
Point2 measured = point + noise;
Key pose_key(1);
Key point_key(2);
PoseToPointFactor<Pose2,Point2> factor(pose_key, point_key, measured,
Isotropic::Sigma(2, 0.05));
Vector expectedError = Vector2(0.0, 0.0);
Vector actualError = factor.evaluateError(pose, point);
EXPECT(assert_equal(expectedError, actualError, 1E-5));
}
/* ************************************************************************* */
// Verify expected error in test scenario
TEST(PoseToPointFactor, errorNoise_2D) {
Pose2 pose = Pose2::Identity();
Point2 point(1.0, 2.0);
Point2 noise(-1.0, 0.5);
Point2 measured = point + noise;
Key pose_key(1);
Key point_key(2);
PoseToPointFactor<Pose2,Point2> factor(pose_key, point_key, measured,
Isotropic::Sigma(2, 0.05));
Vector expectedError = -noise;
Vector actualError = factor.evaluateError(pose, point);
EXPECT(assert_equal(expectedError, actualError, 1E-5));
}
/* ************************************************************************* */
// Check Jacobians are correct
TEST(PoseToPointFactor, jacobian_2D) {
// Measurement
gtsam::Point2 l_meas(1, 2);
// Linearisation point
gtsam::Point2 p_t(-5, 12);
gtsam::Rot2 p_R(1.5 * M_PI);
Pose2 p(p_R, p_t);
gtsam::Point2 l(3, 0);
// Factor
Key pose_key(1);
Key point_key(2);
SharedGaussian noise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1));
PoseToPointFactor<Pose2,Point2> factor(pose_key, point_key, l_meas, noise);
// Calculate numerical derivatives
auto f = [&factor] (const Pose2& pose, const Point2& pt) {
return factor.evaluateError(pose, pt);
};
Matrix numerical_H1 = numericalDerivative21<Vector, Pose2, Point2>(f, p, l);
Matrix numerical_H2 = numericalDerivative22<Vector, Pose2, Point2>(f, p, l);
// Use the factor to calculate the derivative
Matrix actual_H1;
Matrix actual_H2;
factor.evaluateError(p, l, actual_H1, actual_H2);
// Verify we get the expected error
EXPECT(assert_equal(numerical_H1, actual_H1, 1e-8));
EXPECT(assert_equal(numerical_H2, actual_H2, 1e-8));
}
/* ************************************************************************* */
// Verify zero error when there is no noise
TEST(PoseToPointFactor, errorNoiseless_3D) {
Pose3 pose = Pose3::Identity();
Point3 point(1.0, 2.0, 3.0);
Point3 noise(0.0, 0.0, 0.0);
Point3 measured = point + noise;
Key pose_key(1);
Key point_key(2);
PoseToPointFactor<Pose3,Point3> factor(pose_key, point_key, measured,
Isotropic::Sigma(3, 0.05));
Vector expectedError = Vector3(0.0, 0.0, 0.0);
Vector actualError = factor.evaluateError(pose, point);
EXPECT(assert_equal(expectedError, actualError, 1E-5));
}
/* ************************************************************************* */
// Verify expected error in test scenario
TEST(PoseToPointFactor, errorNoise_3D) {
Pose3 pose = Pose3::Identity();
Point3 point(1.0, 2.0, 3.0);
Point3 noise(-1.0, 0.5, 0.3);
Point3 measured = point + noise;
Key pose_key(1);
Key point_key(2);
PoseToPointFactor<Pose3,Point3> factor(pose_key, point_key, measured,
Isotropic::Sigma(3, 0.05));
Vector expectedError = -noise;
Vector actualError = factor.evaluateError(pose, point);
EXPECT(assert_equal(expectedError, actualError, 1E-5));
}
/* ************************************************************************* */
// Check Jacobians are correct
TEST(PoseToPointFactor, jacobian_3D) {
// Measurement
gtsam::Point3 l_meas = gtsam::Point3(1, 2, 3);
// Linearisation point
gtsam::Point3 p_t = gtsam::Point3(-5, 12, 2);
gtsam::Rot3 p_R = gtsam::Rot3::RzRyRx(1.5 * M_PI, -0.3 * M_PI, 0.4 * M_PI);
Pose3 p(p_R, p_t);
gtsam::Point3 l = gtsam::Point3(3, 0, 5);
// Factor
Key pose_key(1);
Key point_key(2);
SharedGaussian noise = noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.1));
PoseToPointFactor<Pose3,Point3> factor(pose_key, point_key, l_meas, noise);
// Calculate numerical derivatives
auto f = [&factor] (const Pose3& pose, const Point3& pt) {
return factor.evaluateError(pose, pt);
};
Matrix numerical_H1 = numericalDerivative21<Vector, Pose3, Point3>(f, p, l);
Matrix numerical_H2 = numericalDerivative22<Vector, Pose3, Point3>(f, p, l);
// Use the factor to calculate the derivative
Matrix actual_H1;
Matrix actual_H2;
factor.evaluateError(p, l, actual_H1, actual_H2);
// Verify we get the expected error
EXPECT(assert_equal(numerical_H1, actual_H1, 1e-8));
EXPECT(assert_equal(numerical_H2, actual_H2, 1e-8));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */