gtsam/gtsam_unstable/slam/tests/testPoseBetweenFactor.cpp

251 lines
9.8 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testProjectionFactor.cpp
* @brief Unit tests for ProjectionFactor Class
* @author Frank Dellaert
* @date Nov 2009
*/
#include <gtsam_unstable/slam/PoseBetweenFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/TestableAssertions.h>
#include <CppUnitLite/TestHarness.h>
using namespace std::placeholders;
using namespace std;
using namespace gtsam;
typedef PoseBetweenFactor<Pose3> TestPoseBetweenFactor;
/// traits
namespace gtsam {
template<>
struct traits<TestPoseBetweenFactor> : public Testable<TestPoseBetweenFactor> {
};
}
/* ************************************************************************* */
TEST( PoseBetweenFactor, Constructor) {
Key poseKey1(1);
Key poseKey2(2);
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
TestPoseBetweenFactor factor(poseKey1, poseKey2, measurement, model);
}
/* ************************************************************************* */
TEST( PoseBetweenFactor, ConstructorWithTransform) {
Key poseKey1(1);
Key poseKey2(2);
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
TestPoseBetweenFactor factor(poseKey1, poseKey2, measurement, model, body_P_sensor);
}
/* ************************************************************************* */
TEST( PoseBetweenFactor, Equals ) {
// Create two identical factors and make sure they're equal
Key poseKey1(1);
Key poseKey2(2);
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
TestPoseBetweenFactor factor1(poseKey1, poseKey2, measurement, model);
TestPoseBetweenFactor factor2(poseKey1, poseKey2, measurement, model);
CHECK(assert_equal(factor1, factor2));
// Create a third, different factor and check for inequality
Pose3 measurement2(Rot3::RzRyRx(0.20, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
TestPoseBetweenFactor factor3(poseKey1, poseKey2, measurement2, model);
CHECK(assert_inequal(factor1, factor3));
}
/* ************************************************************************* */
TEST( PoseBetweenFactor, EqualsWithTransform ) {
// Create two identical factors and make sure they're equal
Key poseKey1(1);
Key poseKey2(2);
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
TestPoseBetweenFactor factor1(poseKey1, poseKey2, measurement, model, body_P_sensor);
TestPoseBetweenFactor factor2(poseKey1, poseKey2, measurement, model, body_P_sensor);
CHECK(assert_equal(factor1, factor2));
// Create a third, different factor and check for inequality
Pose3 body_P_sensor2(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.30, -0.10, 1.0));
TestPoseBetweenFactor factor3(poseKey1, poseKey2, measurement, model, body_P_sensor2);
CHECK(assert_inequal(factor1, factor3));
}
/* ************************************************************************* */
TEST( PoseBetweenFactor, Error ) {
// Create the measurement and linearization point
Pose3 measurement(Rot3::RzRyRx(0.15, 0.15, -0.20), Point3(+0.5, -1.0, +1.0));
Pose3 pose1(Rot3::RzRyRx(0.00, -0.15, 0.30), Point3(-4.0, 7.0, -10.0));
Pose3 pose2(Rot3::RzRyRx(0.15, 0.00, 0.20), Point3(-3.5, 6.0, -9.0));
// The expected error
Vector expectedError(6);
// The solution depends on choice of Pose3 and Rot3 Expmap mode!
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
expectedError << -0.0298135267953815,
0.0131341515747393,
0.0968868439682154,
#if defined(GTSAM_POSE3_EXPMAP)
-0.145701634472172,
-0.134898525569125,
-0.0421026389164264;
#else
-0.13918755,
-0.142346243,
-0.0390885321;
#endif
#else
expectedError << -0.029839512616488,
0.013145599455949,
0.096971291682578,
-0.139187549519821,
-0.142346243063553,
-0.039088532100977;
#endif
// Create a factor and calculate the error
Key poseKey1(1);
Key poseKey2(2);
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
TestPoseBetweenFactor factor(poseKey1, poseKey2, measurement, model);
Vector actualError(factor.evaluateError(pose1, pose2));
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-9));
}
/* ************************************************************************* */
TEST( PoseBetweenFactor, ErrorWithTransform ) {
// Create the measurement and linearization point
Pose3 measurement(Rot3::RzRyRx(-0.15, 0.10, 0.15), Point3(+1.25, -0.90, +.45));
Pose3 pose1(Rot3::RzRyRx(0.00, -0.15, 0.30), Point3(-4.0, 7.0, -10.0));
Pose3 pose2(Rot3::RzRyRx(0.15, 0.00, 0.20), Point3(-3.5, 6.0, -9.0));
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
// The expected error
Vector expectedError(6);
// The solution depends on choice of Pose3 and Rot3 Expmap mode!
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
expectedError << 0.0173358202010741,
0.0222210698409755,
-0.0125032003886145,
#if defined(GTSAM_POSE3_EXPMAP)
0.0263800787416566,
0.00540285006310398,
0.000175859555693563;
#else
0.0264132886,
0.0052376953,
-7.16127036e-05;
#endif
#else
expectedError << 0.017337193670445,
0.022222830355243,
-0.012504190982804,
0.026413288603739,
0.005237695303536,
-0.000071612703633;
#endif
// Create a factor and calculate the error
Key poseKey1(1);
Key poseKey2(2);
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
TestPoseBetweenFactor factor(poseKey1, poseKey2, measurement, model, body_P_sensor);
Vector actualError(factor.evaluateError(pose1, pose2));
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-9));
}
/* ************************************************************************* */
TEST( PoseBetweenFactor, Jacobian ) {
// Create a factor
Key poseKey1(1);
Key poseKey2(2);
Pose3 measurement(Rot3::RzRyRx(0.15, 0.15, -0.20), Point3(+0.5, -1.0, +1.0));
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
TestPoseBetweenFactor factor(poseKey1, poseKey2, measurement, model);
// Create a linearization point at the zero-error point
Pose3 pose1(Rot3::RzRyRx(0.00, -0.15, 0.30), Point3(-4.0, 7.0, -10.0));
Pose3 pose2(Rot3::RzRyRx(0.179693265735950, 0.002945368776519, 0.102274823253840),
Point3(-3.37493895, 6.14660244, -8.93650986));
// Calculate numerical derivatives
Matrix expectedH1 = numericalDerivative11<Vector, Pose3>(
[&factor, &pose2](const Pose3& p) { return factor.evaluateError(p, pose2); }, pose1);
Matrix expectedH2 = numericalDerivative11<Vector, Pose3>(
[&factor, &pose1](const Pose3& p) { return factor.evaluateError(pose1, p); }, pose2);
// Use the factor to calculate the derivative
Matrix actualH1;
Matrix actualH2;
factor.evaluateError(pose1, pose2, actualH1, actualH2);
// Verify we get the expected error
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
CHECK(assert_equal(expectedH2, actualH2, 1e-6));
}
/* ************************************************************************* */
TEST( PoseBetweenFactor, JacobianWithTransform ) {
// Create a factor
Key poseKey1(1);
Key poseKey2(2);
Pose3 measurement(Rot3::RzRyRx(-0.15, 0.10, 0.15), Point3(+1.25, -0.90, +.45));
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
TestPoseBetweenFactor factor(poseKey1, poseKey2, measurement, model, body_P_sensor);
// Create a linearization point at the zero-error point
Pose3 pose1(Rot3::RzRyRx(0.00, -0.15, 0.30), Point3(-4.0, 7.0, -10.0));
Pose3 pose2(Rot3::RzRyRx(0.162672458989103, 0.013665177349534, 0.224649482928184),
Point3(-3.5257579, 6.02637531, -8.98382384));
// Calculate numerical derivatives
Matrix expectedH1 = numericalDerivative11<Vector, Pose3>(
[&factor, &pose2](const Pose3& p) { return factor.evaluateError(p, pose2); }, pose1);
Matrix expectedH2 = numericalDerivative11<Vector, Pose3>(
[&factor, &pose1](const Pose3& p) { return factor.evaluateError(pose1, p); }, pose2);
// Use the factor to calculate the derivative
Matrix actualH1;
Matrix actualH2;
Vector error = factor.evaluateError(pose1, pose2, actualH1, actualH2);
// Verify we get the expected error
CHECK(assert_equal(expectedH1, actualH1, 1e-6));
CHECK(assert_equal(expectedH2, actualH2, 1e-5));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */