156 lines
7.9 KiB
C++
156 lines
7.9 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file JunctionTree-inst.h
|
|
* @date Feb 4, 2010
|
|
* @author Kai Ni
|
|
* @author Frank Dellaert
|
|
* @author Richard Roberts
|
|
* @brief The junction tree, template bodies
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/inference/JunctionTree.h>
|
|
#include <gtsam/inference/ClusterTree-inst.h>
|
|
#include <gtsam/symbolic/SymbolicConditional.h>
|
|
#include <gtsam/symbolic/SymbolicFactor-inst.h>
|
|
|
|
namespace gtsam {
|
|
|
|
namespace {
|
|
/* ************************************************************************* */
|
|
template<class BAYESTREE, class GRAPH>
|
|
struct ConstructorTraversalData {
|
|
ConstructorTraversalData* const parentData;
|
|
typename JunctionTree<BAYESTREE,GRAPH>::sharedNode myJTNode;
|
|
FastVector<SymbolicConditional::shared_ptr> childSymbolicConditionals;
|
|
FastVector<SymbolicFactor::shared_ptr> childSymbolicFactors;
|
|
ConstructorTraversalData(ConstructorTraversalData* _parentData) : parentData(_parentData) {}
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
// Pre-order visitor function
|
|
template<class BAYESTREE, class GRAPH, class ETREE_NODE>
|
|
ConstructorTraversalData<BAYESTREE,GRAPH> ConstructorTraversalVisitorPre(
|
|
const boost::shared_ptr<ETREE_NODE>& node,
|
|
ConstructorTraversalData<BAYESTREE,GRAPH>& parentData)
|
|
{
|
|
// On the pre-order pass, before children have been visited, we just set up a traversal data
|
|
// structure with its own JT node, and create a child pointer in its parent.
|
|
ConstructorTraversalData<BAYESTREE,GRAPH> myData = ConstructorTraversalData<BAYESTREE,GRAPH>(&parentData);
|
|
myData.myJTNode = boost::make_shared<typename JunctionTree<BAYESTREE,GRAPH>::Node>();
|
|
myData.myJTNode->orderedFrontalKeys.push_back(node->key);
|
|
myData.myJTNode->factors.insert(myData.myJTNode->factors.begin(), node->factors.begin(), node->factors.end());
|
|
parentData.myJTNode->children.push_back(myData.myJTNode);
|
|
return myData;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Post-order visitor function
|
|
template<class BAYESTREE, class GRAPH, class ETREE_NODE>
|
|
void ConstructorTraversalVisitorPostAlg2(
|
|
const boost::shared_ptr<ETREE_NODE>& ETreeNode,
|
|
const ConstructorTraversalData<BAYESTREE, GRAPH>& myData)
|
|
{
|
|
// In this post-order visitor, we combine the symbolic elimination results from the
|
|
// elimination tree children and symbolically eliminate the current elimination tree node. We
|
|
// then check whether each of our elimination tree child nodes should be merged with us. The
|
|
// check for this is that our number of symbolic elimination parents is exactly 1 less than
|
|
// our child's symbolic elimination parents - this condition indicates that eliminating the
|
|
// current node did not introduce any parents beyond those already in the child.
|
|
|
|
// Do symbolic elimination for this node
|
|
class : public FactorGraph<Factor> {} symbolicFactors;
|
|
symbolicFactors.reserve(ETreeNode->factors.size() + myData.childSymbolicFactors.size());
|
|
// Add ETree node factors
|
|
symbolicFactors += ETreeNode->factors;
|
|
// Add symbolic factors passed up from children
|
|
symbolicFactors += myData.childSymbolicFactors;
|
|
|
|
Ordering keyAsOrdering; keyAsOrdering.push_back(ETreeNode->key);
|
|
std::pair<SymbolicConditional::shared_ptr, SymbolicFactor::shared_ptr> symbolicElimResult =
|
|
internal::EliminateSymbolic(symbolicFactors, keyAsOrdering);
|
|
|
|
// Store symbolic elimination results in the parent
|
|
myData.parentData->childSymbolicConditionals.push_back(symbolicElimResult.first);
|
|
myData.parentData->childSymbolicFactors.push_back(symbolicElimResult.second);
|
|
|
|
// Merge our children if they are in our clique - if our conditional has exactly one fewer
|
|
// parent than our child's conditional.
|
|
size_t myNrFrontals = 1;
|
|
const size_t myNrParents = symbolicElimResult.first->nrParents();
|
|
size_t nrMergedChildren = 0;
|
|
assert(myData.myJTNode->children.size() == myData.childSymbolicConditionals.size());
|
|
// Loop over children
|
|
int combinedProblemSize = (int) (symbolicElimResult.first->size() * symbolicFactors.size());
|
|
for(size_t child = 0; child < myData.childSymbolicConditionals.size(); ++child) {
|
|
// Check if we should merge the child
|
|
if(myNrParents + myNrFrontals == myData.childSymbolicConditionals[child]->nrParents()) {
|
|
// Get a reference to the child, adjusting the index to account for children previously
|
|
// merged and removed from the child list.
|
|
const typename JunctionTree<BAYESTREE, GRAPH>::Node& childToMerge =
|
|
*myData.myJTNode->children[child - nrMergedChildren];
|
|
// Merge keys, factors, and children.
|
|
myData.myJTNode->orderedFrontalKeys.insert(
|
|
myData.myJTNode->orderedFrontalKeys.begin(),
|
|
childToMerge.orderedFrontalKeys.begin(),
|
|
childToMerge.orderedFrontalKeys.end());
|
|
myData.myJTNode->factors.insert(myData.myJTNode->factors.end(),
|
|
childToMerge.factors.begin(),
|
|
childToMerge.factors.end());
|
|
myData.myJTNode->children.insert(myData.myJTNode->children.end(),
|
|
childToMerge.children.begin(),
|
|
childToMerge.children.end());
|
|
// Increment problem size
|
|
combinedProblemSize = std::max(combinedProblemSize, childToMerge.problemSize_);
|
|
// Increment number of frontal variables
|
|
myNrFrontals += childToMerge.orderedFrontalKeys.size();
|
|
// Remove child from list.
|
|
myData.myJTNode->children.erase(myData.myJTNode->children.begin() + (child - nrMergedChildren));
|
|
// Increment number of merged children
|
|
++ nrMergedChildren;
|
|
}
|
|
}
|
|
myData.myJTNode->problemSize_ = combinedProblemSize;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class BAYESTREE, class GRAPH>
|
|
template<class ETREE_BAYESNET, class ETREE_GRAPH>
|
|
JunctionTree<BAYESTREE,GRAPH>::JunctionTree(const EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>& eliminationTree)
|
|
{
|
|
gttic(JunctionTree_FromEliminationTree);
|
|
// Here we rely on the BayesNet having been produced by this elimination tree, such that the
|
|
// conditionals are arranged in DFS post-order. We traverse the elimination tree, and inspect
|
|
// the symbolic conditional corresponding to each node. The elimination tree node is added to
|
|
// the same clique with its parent if it has exactly one more Bayes net conditional parent than
|
|
// does its elimination tree parent.
|
|
|
|
// Traverse the elimination tree, doing symbolic elimination and merging nodes as we go. Gather
|
|
// the created junction tree roots in a dummy Node.
|
|
typedef typename EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>::Node ETreeNode;
|
|
ConstructorTraversalData<BAYESTREE, GRAPH> rootData(0);
|
|
rootData.myJTNode = boost::make_shared<typename Base::Node>(); // Make a dummy node to gather the junction tree roots
|
|
treeTraversal::DepthFirstForest(eliminationTree, rootData,
|
|
ConstructorTraversalVisitorPre<BAYESTREE,GRAPH,ETreeNode>, ConstructorTraversalVisitorPostAlg2<BAYESTREE,GRAPH,ETreeNode>);
|
|
|
|
// Assign roots from the dummy node
|
|
Base::roots_ = rootData.myJTNode->children;
|
|
|
|
// Transfer remaining factors from elimination tree
|
|
Base::remainingFactors_ = eliminationTree.remainingFactors();
|
|
}
|
|
|
|
} //namespace gtsam
|