436 lines
15 KiB
C++
436 lines
15 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testGeneralSFMFactor.cpp
|
|
* @date Dec 27, 2010
|
|
* @author nikai
|
|
* @brief unit tests for GeneralSFMFactor
|
|
*/
|
|
|
|
#include <gtsam/slam/GeneralSFMFactor.h>
|
|
#include <gtsam/slam/RangeFactor.h>
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <gtsam/nonlinear/NonlinearEquality.h>
|
|
#include <gtsam/nonlinear/Symbol.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/linear/VectorValues.h>
|
|
#include <gtsam/geometry/Cal3_S2.h>
|
|
#include <gtsam/geometry/PinholeCamera.h>
|
|
#include <gtsam/base/Testable.h>
|
|
|
|
#include <boost/shared_ptr.hpp>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
using namespace boost;
|
|
|
|
#include <iostream>
|
|
#include <vector>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
// Convenience for named keys
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
|
|
typedef PinholeCamera<Cal3_S2> GeneralCamera;
|
|
typedef GeneralSFMFactor<GeneralCamera, Point3> Projection;
|
|
typedef NonlinearEquality<GeneralCamera> CameraConstraint;
|
|
typedef NonlinearEquality<Point3> Point3Constraint;
|
|
|
|
class Graph: public NonlinearFactorGraph {
|
|
public:
|
|
void addMeasurement(int i, int j, const Point2& z, const SharedNoiseModel& model) {
|
|
push_back(boost::make_shared<Projection>(z, model, X(i), L(j)));
|
|
}
|
|
|
|
void addCameraConstraint(int j, const GeneralCamera& p) {
|
|
boost::shared_ptr<CameraConstraint> factor(new CameraConstraint(X(j), p));
|
|
push_back(factor);
|
|
}
|
|
|
|
void addPoint3Constraint(int j, const Point3& p) {
|
|
boost::shared_ptr<Point3Constraint> factor(new Point3Constraint(L(j), p));
|
|
push_back(factor);
|
|
}
|
|
|
|
};
|
|
|
|
static double getGaussian()
|
|
{
|
|
double S,V1,V2;
|
|
// Use Box-Muller method to create gauss noise from uniform noise
|
|
do
|
|
{
|
|
double U1 = rand() / (double)(RAND_MAX);
|
|
double U2 = rand() / (double)(RAND_MAX);
|
|
V1 = 2 * U1 - 1; /* V1=[-1,1] */
|
|
V2 = 2 * U2 - 1; /* V2=[-1,1] */
|
|
S = V1 * V1 + V2 * V2;
|
|
} while(S>=1);
|
|
return sqrt(-2.0f * (double)log(S) / S) * V1;
|
|
}
|
|
|
|
static const SharedNoiseModel sigma1(noiseModel::Unit::Create(2));
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GeneralSFMFactor, equals )
|
|
{
|
|
// Create two identical factors and make sure they're equal
|
|
Vector z = Vector_(2,323.,240.);
|
|
const Symbol cameraFrameNumber('x',1), landmarkNumber('l',1);
|
|
const SharedNoiseModel sigma(noiseModel::Unit::Create(1));
|
|
boost::shared_ptr<Projection>
|
|
factor1(new Projection(z, sigma, cameraFrameNumber, landmarkNumber));
|
|
|
|
boost::shared_ptr<Projection>
|
|
factor2(new Projection(z, sigma, cameraFrameNumber, landmarkNumber));
|
|
|
|
EXPECT(assert_equal(*factor1, *factor2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GeneralSFMFactor, error ) {
|
|
Point2 z(3.,0.);
|
|
const SharedNoiseModel sigma(noiseModel::Unit::Create(1));
|
|
boost::shared_ptr<Projection> factor(new Projection(z, sigma, X(1), L(1)));
|
|
// For the following configuration, the factor predicts 320,240
|
|
Values values;
|
|
Rot3 R;
|
|
Point3 t1(0,0,-6);
|
|
Pose3 x1(R,t1);
|
|
values.insert(X(1), GeneralCamera(x1));
|
|
Point3 l1; values.insert(L(1), l1);
|
|
EXPECT(assert_equal(Vector_(2, -3.0, 0.0), factor->unwhitenedError(values)));
|
|
}
|
|
|
|
static const double baseline = 5.0 ;
|
|
|
|
/* ************************************************************************* */
|
|
static vector<Point3> genPoint3() {
|
|
const double z = 5;
|
|
vector<Point3> landmarks ;
|
|
landmarks.push_back(Point3 (-1.0,-1.0, z));
|
|
landmarks.push_back(Point3 (-1.0, 1.0, z));
|
|
landmarks.push_back(Point3 ( 1.0, 1.0, z));
|
|
landmarks.push_back(Point3 ( 1.0,-1.0, z));
|
|
landmarks.push_back(Point3 (-1.5,-1.5, 1.5*z));
|
|
landmarks.push_back(Point3 (-1.5, 1.5, 1.5*z));
|
|
landmarks.push_back(Point3 ( 1.5, 1.5, 1.5*z));
|
|
landmarks.push_back(Point3 ( 1.5,-1.5, 1.5*z));
|
|
landmarks.push_back(Point3 (-2.0,-2.0, 2*z));
|
|
landmarks.push_back(Point3 (-2.0, 2.0, 2*z));
|
|
landmarks.push_back(Point3 ( 2.0, 2.0, 2*z));
|
|
landmarks.push_back(Point3 ( 2.0,-2.0, 2*z));
|
|
return landmarks ;
|
|
}
|
|
|
|
static vector<GeneralCamera> genCameraDefaultCalibration() {
|
|
vector<GeneralCamera> X ;
|
|
X.push_back(GeneralCamera(Pose3(eye(3),Point3(-baseline/2.0, 0.0, 0.0))));
|
|
X.push_back(GeneralCamera(Pose3(eye(3),Point3( baseline/2.0, 0.0, 0.0))));
|
|
return X ;
|
|
}
|
|
|
|
static vector<GeneralCamera> genCameraVariableCalibration() {
|
|
const Cal3_S2 K(640,480,0.01,320,240);
|
|
vector<GeneralCamera> X ;
|
|
X.push_back(GeneralCamera(Pose3(eye(3),Point3(-baseline/2.0, 0.0, 0.0)), K));
|
|
X.push_back(GeneralCamera(Pose3(eye(3),Point3( baseline/2.0, 0.0, 0.0)), K));
|
|
return X ;
|
|
}
|
|
|
|
static boost::shared_ptr<Ordering> getOrdering(const vector<GeneralCamera>& cameras, const vector<Point3>& landmarks) {
|
|
boost::shared_ptr<Ordering> ordering(new Ordering);
|
|
for ( size_t i = 0 ; i < landmarks.size() ; ++i ) ordering->push_back(L(i)) ;
|
|
for ( size_t i = 0 ; i < cameras.size() ; ++i ) ordering->push_back(X(i)) ;
|
|
return ordering ;
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GeneralSFMFactor, optimize_defaultK ) {
|
|
|
|
vector<Point3> landmarks = genPoint3();
|
|
vector<GeneralCamera> cameras = genCameraDefaultCalibration();
|
|
|
|
// add measurement with noise
|
|
Graph graph;
|
|
for ( size_t j = 0 ; j < cameras.size() ; ++j) {
|
|
for ( size_t i = 0 ; i < landmarks.size() ; ++i) {
|
|
Point2 pt = cameras[j].project(landmarks[i]) ;
|
|
graph.addMeasurement(j, i, pt, sigma1);
|
|
}
|
|
}
|
|
|
|
const size_t nMeasurements = cameras.size()*landmarks.size() ;
|
|
|
|
// add initial
|
|
const double noise = baseline*0.1;
|
|
Values values;
|
|
for ( size_t i = 0 ; i < cameras.size() ; ++i )
|
|
values.insert(X(i), cameras[i]) ;
|
|
|
|
for ( size_t i = 0 ; i < landmarks.size() ; ++i ) {
|
|
Point3 pt(landmarks[i].x()+noise*getGaussian(),
|
|
landmarks[i].y()+noise*getGaussian(),
|
|
landmarks[i].z()+noise*getGaussian());
|
|
values.insert(L(i), pt) ;
|
|
}
|
|
|
|
graph.addCameraConstraint(0, cameras[0]);
|
|
|
|
// Create an ordering of the variables
|
|
Ordering ordering = *getOrdering(cameras,landmarks);
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
|
|
Values final = optimizer.optimize();
|
|
EXPECT(optimizer.error() < 0.5 * 1e-5 * nMeasurements);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GeneralSFMFactor, optimize_varK_SingleMeasurementError ) {
|
|
vector<Point3> landmarks = genPoint3();
|
|
vector<GeneralCamera> cameras = genCameraVariableCalibration();
|
|
// add measurement with noise
|
|
Graph graph;
|
|
for ( size_t j = 0 ; j < cameras.size() ; ++j) {
|
|
for ( size_t i = 0 ; i < landmarks.size() ; ++i) {
|
|
Point2 pt = cameras[j].project(landmarks[i]) ;
|
|
graph.addMeasurement(j, i, pt, sigma1);
|
|
}
|
|
}
|
|
|
|
const size_t nMeasurements = cameras.size()*landmarks.size() ;
|
|
|
|
// add initial
|
|
const double noise = baseline*0.1;
|
|
Values values;
|
|
for ( size_t i = 0 ; i < cameras.size() ; ++i )
|
|
values.insert(X(i), cameras[i]) ;
|
|
|
|
// add noise only to the first landmark
|
|
for ( size_t i = 0 ; i < landmarks.size() ; ++i ) {
|
|
if ( i == 0 ) {
|
|
Point3 pt(landmarks[i].x()+noise*getGaussian(),
|
|
landmarks[i].y()+noise*getGaussian(),
|
|
landmarks[i].z()+noise*getGaussian());
|
|
values.insert(L(i), pt) ;
|
|
}
|
|
else {
|
|
values.insert(L(i), landmarks[i]) ;
|
|
}
|
|
}
|
|
|
|
graph.addCameraConstraint(0, cameras[0]);
|
|
const double reproj_error = 1e-5;
|
|
|
|
Ordering ordering = *getOrdering(cameras,landmarks);
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
|
|
Values final = optimizer.optimize();
|
|
EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GeneralSFMFactor, optimize_varK_FixCameras ) {
|
|
|
|
vector<Point3> landmarks = genPoint3();
|
|
vector<GeneralCamera> cameras = genCameraVariableCalibration();
|
|
|
|
// add measurement with noise
|
|
const double noise = baseline*0.1;
|
|
Graph graph;
|
|
for ( size_t j = 0 ; j < cameras.size() ; ++j) {
|
|
for ( size_t i = 0 ; i < landmarks.size() ; ++i) {
|
|
Point2 pt = cameras[j].project(landmarks[i]) ;
|
|
graph.addMeasurement(j, i, pt, sigma1);
|
|
}
|
|
}
|
|
|
|
const size_t nMeasurements = landmarks.size()*cameras.size();
|
|
|
|
Values values;
|
|
for ( size_t i = 0 ; i < cameras.size() ; ++i )
|
|
values.insert(X(i), cameras[i]) ;
|
|
|
|
for ( size_t i = 0 ; i < landmarks.size() ; ++i ) {
|
|
Point3 pt(landmarks[i].x()+noise*getGaussian(),
|
|
landmarks[i].y()+noise*getGaussian(),
|
|
landmarks[i].z()+noise*getGaussian());
|
|
//Point3 pt(landmarks[i].x(), landmarks[i].y(), landmarks[i].z());
|
|
values.insert(L(i), pt) ;
|
|
}
|
|
|
|
for ( size_t i = 0 ; i < cameras.size() ; ++i )
|
|
graph.addCameraConstraint(i, cameras[i]);
|
|
|
|
const double reproj_error = 1e-5 ;
|
|
|
|
Ordering ordering = *getOrdering(cameras,landmarks);
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
|
|
Values final = optimizer.optimize();
|
|
EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GeneralSFMFactor, optimize_varK_FixLandmarks ) {
|
|
|
|
vector<Point3> landmarks = genPoint3();
|
|
vector<GeneralCamera> cameras = genCameraVariableCalibration();
|
|
|
|
// add measurement with noise
|
|
Graph graph;
|
|
for ( size_t j = 0 ; j < cameras.size() ; ++j) {
|
|
for ( size_t i = 0 ; i < landmarks.size() ; ++i) {
|
|
Point2 pt = cameras[j].project(landmarks[i]) ;
|
|
graph.addMeasurement(j, i, pt, sigma1);
|
|
}
|
|
}
|
|
|
|
const size_t nMeasurements = landmarks.size()*cameras.size();
|
|
|
|
Values values;
|
|
for ( size_t i = 0 ; i < cameras.size() ; ++i ) {
|
|
const double
|
|
rot_noise = 1e-5,
|
|
trans_noise = 1e-3,
|
|
focal_noise = 1,
|
|
skew_noise = 1e-5;
|
|
if ( i == 0 ) {
|
|
values.insert(X(i), cameras[i]) ;
|
|
}
|
|
else {
|
|
|
|
Vector delta = Vector_(11,
|
|
rot_noise, rot_noise, rot_noise, // rotation
|
|
trans_noise, trans_noise, trans_noise, // translation
|
|
focal_noise, focal_noise, // f_x, f_y
|
|
skew_noise, // s
|
|
trans_noise, trans_noise // ux, uy
|
|
) ;
|
|
values.insert(X(i), cameras[i].retract(delta)) ;
|
|
}
|
|
}
|
|
|
|
for ( size_t i = 0 ; i < landmarks.size() ; ++i ) {
|
|
values.insert(L(i), landmarks[i]) ;
|
|
}
|
|
|
|
// fix X0 and all landmarks, allow only the cameras[1] to move
|
|
graph.addCameraConstraint(0, cameras[0]);
|
|
for ( size_t i = 0 ; i < landmarks.size() ; ++i )
|
|
graph.addPoint3Constraint(i, landmarks[i]);
|
|
|
|
const double reproj_error = 1e-5 ;
|
|
|
|
Ordering ordering = *getOrdering(cameras,landmarks);
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
|
|
Values final = optimizer.optimize();
|
|
EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GeneralSFMFactor, optimize_varK_BA ) {
|
|
vector<Point3> landmarks = genPoint3();
|
|
vector<GeneralCamera> cameras = genCameraVariableCalibration();
|
|
|
|
// add measurement with noise
|
|
Graph graph;
|
|
for ( size_t j = 0 ; j < cameras.size() ; ++j) {
|
|
for ( size_t i = 0 ; i < landmarks.size() ; ++i) {
|
|
Point2 pt = cameras[j].project(landmarks[i]) ;
|
|
graph.addMeasurement(j, i, pt, sigma1);
|
|
}
|
|
}
|
|
|
|
const size_t nMeasurements = cameras.size()*landmarks.size() ;
|
|
|
|
// add initial
|
|
const double noise = baseline*0.1;
|
|
Values values;
|
|
for ( size_t i = 0 ; i < cameras.size() ; ++i )
|
|
values.insert(X(i), cameras[i]) ;
|
|
|
|
// add noise only to the first landmark
|
|
for ( size_t i = 0 ; i < landmarks.size() ; ++i ) {
|
|
Point3 pt(landmarks[i].x()+noise*getGaussian(),
|
|
landmarks[i].y()+noise*getGaussian(),
|
|
landmarks[i].z()+noise*getGaussian());
|
|
values.insert(L(i), pt) ;
|
|
}
|
|
|
|
// Constrain position of system with the first camera constrained to the origin
|
|
graph.addCameraConstraint(0, cameras[0]);
|
|
|
|
// Constrain the scale of the problem with a soft range factor of 1m between the cameras
|
|
graph.add(RangeFactor<GeneralCamera,GeneralCamera>(X(0), X(1), 2.0, noiseModel::Isotropic::Sigma(1, 10.0)));
|
|
|
|
const double reproj_error = 1e-5 ;
|
|
|
|
Ordering ordering = *getOrdering(cameras,landmarks);
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, ordering);
|
|
Values final = optimizer.optimize();
|
|
EXPECT(optimizer.error() < 0.5 * reproj_error * nMeasurements);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(GeneralSFMFactor, GeneralCameraPoseRange) {
|
|
// Tests range factor between a GeneralCamera and a Pose3
|
|
Graph graph;
|
|
graph.addCameraConstraint(0, GeneralCamera());
|
|
graph.add(RangeFactor<GeneralCamera, Pose3>(X(0), X(1), 2.0, noiseModel::Isotropic::Sigma(1, 1.0)));
|
|
graph.add(PriorFactor<Pose3>(X(1), Pose3(Rot3(), Point3(1.0, 0.0, 0.0)), noiseModel::Isotropic::Sigma(6, 1.0)));
|
|
|
|
Values init;
|
|
init.insert(X(0), GeneralCamera());
|
|
init.insert(X(1), Pose3(Rot3(), Point3(1.0,1.0,1.0)));
|
|
|
|
// The optimal value between the 2m range factor and 1m prior is 1.5m
|
|
Values expected;
|
|
expected.insert(X(0), GeneralCamera());
|
|
expected.insert(X(1), Pose3(Rot3(), Point3(1.5,0.0,0.0)));
|
|
|
|
LevenbergMarquardtParams params;
|
|
params.absoluteErrorTol = 1e-9;
|
|
params.relativeErrorTol = 1e-9;
|
|
Values actual = LevenbergMarquardtOptimizer(graph, init, params).optimize();
|
|
|
|
EXPECT(assert_equal(expected, actual, 1e-4));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(GeneralSFMFactor, CalibratedCameraPoseRange) {
|
|
// Tests range factor between a CalibratedCamera and a Pose3
|
|
NonlinearFactorGraph graph;
|
|
graph.add(PriorFactor<CalibratedCamera>(X(0), CalibratedCamera(), noiseModel::Isotropic::Sigma(6, 1.0)));
|
|
graph.add(RangeFactor<CalibratedCamera, Pose3>(X(0), X(1), 2.0, noiseModel::Isotropic::Sigma(1, 1.0)));
|
|
graph.add(PriorFactor<Pose3>(X(1), Pose3(Rot3(), Point3(1.0, 0.0, 0.0)), noiseModel::Isotropic::Sigma(6, 1.0)));
|
|
|
|
Values init;
|
|
init.insert(X(0), CalibratedCamera());
|
|
init.insert(X(1), Pose3(Rot3(), Point3(1.0,1.0,1.0)));
|
|
|
|
Values expected;
|
|
expected.insert(X(0), CalibratedCamera(Pose3(Rot3(), Point3(-0.333333333333, 0, 0))));
|
|
expected.insert(X(1), Pose3(Rot3(), Point3(1.333333333333, 0, 0)));
|
|
|
|
LevenbergMarquardtParams params;
|
|
params.absoluteErrorTol = 1e-9;
|
|
params.relativeErrorTol = 1e-9;
|
|
Values actual = LevenbergMarquardtOptimizer(graph, init, params).optimize();
|
|
|
|
EXPECT(assert_equal(expected, actual, 1e-4));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
|
/* ************************************************************************* */
|