213 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			213 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file DSF.h
 | |
|  * @date Mar 26, 2010
 | |
|  * @author Kai Ni
 | |
|  * @brief An implementation of Disjoint set forests (see CLR page 446 and up)
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtsam_unstable/base/BTree.h>
 | |
| #include <iostream>
 | |
| #include <list>
 | |
| #include <set>
 | |
| #include <map>
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| /**
 | |
|  * Disjoint Set Forest class
 | |
|  *
 | |
|  * Quoting from CLR: A disjoint-set data structure maintains a collection
 | |
|  * S = {S_1,S_2,...} of disjoint dynamic sets. Each set is identified by
 | |
|  * a representative, which is some member of the set.
 | |
|  *
 | |
|  * @ingroup base
 | |
|  */
 | |
| template<class KEY>
 | |
| class DSF: protected BTree<KEY, KEY> {
 | |
| 
 | |
| public:
 | |
|   typedef DSF<KEY> Self;
 | |
|   typedef std::set<KEY> Set;
 | |
|   typedef BTree<KEY, KEY> Tree;
 | |
|   typedef std::pair<KEY, KEY> KeyLabel;
 | |
| 
 | |
|   // constructor
 | |
|   DSF() :
 | |
|       Tree() {
 | |
|   }
 | |
| 
 | |
|   // constructor
 | |
|   DSF(const Tree& tree) :
 | |
|       Tree(tree) {
 | |
|   }
 | |
| 
 | |
|   // constructor with a list of unconnected keys
 | |
|   DSF(const std::list<KEY>& keys) :
 | |
|       Tree() {
 | |
|     for(const KEY& key: keys)
 | |
|       *this = this->add(key, key);
 | |
|   }
 | |
| 
 | |
|   // constructor with a set of unconnected keys
 | |
|   DSF(const std::set<KEY>& keys) :
 | |
|       Tree() {
 | |
|     for(const KEY& key: keys)
 | |
|       *this = this->add(key, key);
 | |
|   }
 | |
| 
 | |
|   // create a new singleton, does nothing if already exists
 | |
|   Self makeSet(const KEY& key) const {
 | |
|     if (this->mem(key))
 | |
|       return *this;
 | |
|     else
 | |
|       return this->add(key, key);
 | |
|   }
 | |
| 
 | |
|   // create a new singleton, does nothing if already exists
 | |
|   void makeSetInPlace(const KEY& key) {
 | |
|     if (!this->mem(key))
 | |
|       *this = this->add(key, key);
 | |
|   }
 | |
| 
 | |
|   // find the label of the set in which {key} lives
 | |
|   KEY findSet(const KEY& key) const {
 | |
|     KEY parent = this->find(key);
 | |
|     return parent == key ? key : findSet(parent);
 | |
|   }
 | |
| 
 | |
|   // return a new DSF where x and y are in the same set. No path compression
 | |
|   Self makeUnion(const KEY& key1, const KEY& key2) const {
 | |
|     DSF<KEY> copy = *this;
 | |
|     copy.makeUnionInPlace(key1,key2);
 | |
|     return copy;
 | |
|   }
 | |
| 
 | |
|   // the in-place version of makeUnion
 | |
|   void makeUnionInPlace(const KEY& key1, const KEY& key2) {
 | |
|     *this = this->add(findSet_(key2), findSet_(key1));
 | |
|   }
 | |
| 
 | |
|   // create a new singleton with two connected keys
 | |
|   Self makePair(const KEY& key1, const KEY& key2) const {
 | |
|     return makeSet(key1).makeSet(key2).makeUnion(key1, key2);
 | |
|   }
 | |
| 
 | |
|   // create a new singleton with a list of fully connected keys
 | |
|   Self makeList(const std::list<KEY>& keys) const {
 | |
|     Self t = *this;
 | |
|     for(const KEY& key: keys)
 | |
|       t = t.makePair(key, keys.front());
 | |
|     return t;
 | |
|   }
 | |
| 
 | |
|   // return a dsf in which all find_set operations will be O(1) due to path compression.
 | |
|   DSF flatten() const {
 | |
|     DSF t = *this;
 | |
|     for(const KeyLabel& pair: (Tree)t)
 | |
|       t.findSet_(pair.first);
 | |
|     return t;
 | |
|   }
 | |
| 
 | |
|   // maps f over all keys, must be invertible
 | |
|   DSF map(std::function<KEY(const KEY&)> func) const {
 | |
|     DSF t;
 | |
|     for(const KeyLabel& pair: (Tree)*this)
 | |
|       t = t.add(func(pair.first), func(pair.second));
 | |
|     return t;
 | |
|   }
 | |
| 
 | |
|   // return the number of sets
 | |
|   size_t numSets() const {
 | |
|     size_t num = 0;
 | |
|     for(const KeyLabel& pair: (Tree)*this)
 | |
|       if (pair.first == pair.second)
 | |
|         num++;
 | |
|     return num;
 | |
|   }
 | |
| 
 | |
|   // return the numer of keys
 | |
|   size_t size() const {
 | |
|     return Tree::size();
 | |
|   }
 | |
| 
 | |
|   // return all sets, i.e. a partition of all elements
 | |
|   std::map<KEY, Set> sets() const {
 | |
|     std::map<KEY, Set> sets;
 | |
|     for(const KeyLabel& pair: (Tree)*this)
 | |
|       sets[findSet(pair.second)].insert(pair.first);
 | |
|     return sets;
 | |
|   }
 | |
| 
 | |
|   // return a partition of the given elements {keys}
 | |
|   std::map<KEY, Set> partition(const std::list<KEY>& keys) const {
 | |
|     std::map<KEY, Set> partitions;
 | |
|     for(const KEY& key: keys)
 | |
|       partitions[findSet(key)].insert(key);
 | |
|     return partitions;
 | |
|   }
 | |
| 
 | |
|   // get the nodes in the tree with the given label
 | |
|   Set set(const KEY& label) const {
 | |
|     Set set;
 | |
|     for(const KeyLabel& pair: (Tree)*this) {
 | |
|       if (pair.second == label || findSet(pair.second) == label)
 | |
|         set.insert(pair.first);
 | |
|     }
 | |
|     return set;
 | |
|   }
 | |
| 
 | |
|   /** equality */
 | |
|   bool operator==(const Self& t) const {
 | |
|     return (Tree) *this == (Tree) t;
 | |
|   }
 | |
| 
 | |
|   /** inequality */
 | |
|   bool operator!=(const Self& t) const {
 | |
|     return (Tree) *this != (Tree) t;
 | |
|   }
 | |
| 
 | |
|   // print the object
 | |
|   void print(const std::string& name = "DSF") const {
 | |
|     std::cout << name << std::endl;
 | |
|     for(const KeyLabel& pair: (Tree)*this)
 | |
|       std::cout << (std::string) pair.first << " " << (std::string) pair.second
 | |
|           << std::endl;
 | |
|   }
 | |
| 
 | |
| protected:
 | |
| 
 | |
|   /**
 | |
|    * same as findSet except with path compression: After we have traversed the path to
 | |
|    * the root, each parent pointer is made to directly point to it
 | |
|    */
 | |
|   KEY findSet_(const KEY& key) {
 | |
|     KEY parent = this->find(key);
 | |
|     if (parent == key)
 | |
|       return parent;
 | |
|     else {
 | |
|       KEY label = findSet_(parent);
 | |
|       *this = this->add(key, label);
 | |
|       return label;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| // shortcuts
 | |
| typedef DSF<int> DSFInt;
 | |
| 
 | |
| } // namespace gtsam
 |